首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Densities of the isopropanolamine–water binary mixture system were measured over the whole range of compositions at temperatures from 283.15 to 353.15 K using an Anton Paar digital vibrating glass tube densimeter. The density of this system has been found an increasing function of the isopropanolamine composition. Excess molar volume data, calculated from the measured experimental densities, have been correlated using the Redlich–Kister equation. Parameters for the Redlich–Kister equation have been adjusted. Partial molar volumes at infinite dilution have been calculated for each component.  相似文献   

3.
This work reports new experimental density data (954 points) for binary mixtures of 1-heptanol + heptane over the composition range (seven compositions; 0  1-heptanol mole fraction x  1), between 298.15 and 393.15 K, and for 23 pressures from 0.1 MPa up to 140 MPa. An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.7 kg · m−3 was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation, provided as supplementary material.  相似文献   

4.
Densities of the water + ethylenediamine binary system were measured at atmospheric pressure over the whole range of compositions at temperatures from 288.15 to 353.15 K using an Anton Paar digital vibrating glass tube densimeter. Density increases with water content. The experimental excess molar volume data have been correlated with the Redlich-Kister equation, and partial molar volumes calculated at infinite dilution for each component.  相似文献   

5.
6.
The densities, ρ, of binary mixtures of tetrahydrofuran (THF) with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene, including those of the pure liquids, were measured over the entire composition range at the temperatures (278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, m,1 and m,2 , and excess partial molar volumes, m,1 ∘E and m,2 ∘E, at infinite dilution were calculated. The V m E values were found to be negative over the whole composition range for all of the mixtures and at each temperature studied, except for THF + mesitylene, which exhibits a sigmoid trend wherein V m E changes sign from negative to positive as the concentration of THF in the mixture is increased, indicating the presence of specific interactions between THF and aromatic hydrocarbon molecules. The extent of negative deviations in the V m E values follows the order: benzene > toluene > p-xylene > m-xylene > o-xylene > mesitylene. It is observed that the V m E values depend upon the number and position of the methyl groups in these aromatic hydrocarbons.  相似文献   

7.
This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.  相似文献   

8.
This work is a continuation of our studies on experimental measurements of physical properties on binary mixtures of the ionic liquid (IL) family 1-alkyl-3-methyl imidazolium tetrafluoroborate (CnMIM-BF4) with water and ethanol. Here, we present density for the ternary system Butyl-MIM-BF4 + ethanol + water at two temperatures (298.15 K and 323.15 K) and seven pressures (from 0.1 to 30 MPa). It should be noted that BMIM-BF4 is the only IL of the family CnMIM-BF4 that can be mixed with water and ethanol in all range of concentrations at room conditions. From the density data measured in function of pressure and temperature other important derived thermodynamic properties can be calculated, such us excess molar volumes, isothermal compressibility, isobaric expansion and the thermal pressure coefficients. These properties for selected ternary mixtures will be discussed and compared with data from the scarce number of published results for similar ternary mixtures with this same IL.  相似文献   

9.
10.
The densities of binary mixtures of (1-propanol, or 1-butanol, or 2-butanol, or 1-pentanol + chlorobenzene) have been measured at temperatures 288.15, 293.15, 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure while for the system (2-methyl-2-propanol + chlorobenzene) measurements were performed at the same pressure and temperatures 303.15, 308.15, 313.15, 318.15 and 323.15 K. All measurements were performed by means of an Anton Paar DMA 5000 digital vibrating-tube densimeter. Excess molar volumes VE were determined and fitted by the Redlich–Kister equation. It was observed that in all cases, VE increase with rising of temperature. The values of limiting excess partial molar volumes have been calculated, as well. The obtained results have been analysed in terms of specific molecular interactions present in these mixtures taking into consideration effect of the chain length of alcohols, degree of branching in the chain, relative position of the alkyl and OH group in an alcohol and the effect of temperature on them. In addition, the correlation of VE binary data was performed with the Peng–Robinson–Stryjek–Vera cubic equation of state (PRSV CEOS) coupled with the van der Waals (vdW1) and CEOS/GE mixing rule introduced by Twu, Coon, Bluck and Tilton (TCBT). Also, the possibility of cross prediction between VE and VLE by means of the NRTL parameters of GE model available in literature and those incorporated in the TCBT model was tested.  相似文献   

11.
The densities and speeds of sound of (cyclohexane + nonane) were measured at four temperatures from 298.15 K to 328.15 K, and the respective values of excess volumes and adiabatic compressibility were calculated. Thereafter, the densities for the last system were measured at elevated pressures (0.1 to 40) MPa at four temperatures over the range 298.15 K to 328.15 K with a high-pressure apparatus. The high-pressure density data were fitted to the Tait equation and the isothermal compressibilities were calculated with a novel procedure with the aid of this equation. The low- and high-pressure values of calculated from the density data show that the deviations from ideal behaviour in the system decrease slightly as the temperature and pressure are raised. The data were fitted to the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters.  相似文献   

12.
The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, Vm, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E°, the isobaric coefficient of thermal expansion, αp, and the interaction coefficient, Sv, have also been computed. The expansivity data show dependence of E° values on the structure of the solute molecules.  相似文献   

13.
14.
Densities ρ of the ternary system (ethanol + chloroform + benzene) and binaries (ethanol + chloroform) and (chloroform + benzene), have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15) K and pressure 101.33 kPa with an Anton Paar DMA 5000 digital vibrating tube densimeter. Excess molar volumes VE were calculated from these densities data and fitted by the polynomial Redlich–Kister (for binary data) and Nagata and Tamura (for ternary data) equations. Radojkovi? et al. equation was used for the prediction of the VE of ternary data. The obtained results have been explained in terms of different effects between molecules of present species, taking into consideration influence of temperature on them.  相似文献   

15.
Densities of dilute aqueous solutions of three branched diols derived from propane-1,3-diol (2-methyl-2-propylpropane-1,3-diol, 2,2-diethylpropane-1,3-diol, and 2-ethyl-2-butylpropane-1,3-diol) and of 3-methylpentane-1,5-diol measured over the temperature range from (298 to 573) K and at pressures up to 30 MPa using a flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data were combined with those obtained previously for related solutes and relations to the structures of solute molecules are discussed. Predictions of standard molar volumes based on group contribution approach were tested and analysed.  相似文献   

16.
17.
18.
The densities of binary mixtures of formamide (FA) with 1-butanol, 2-butanol, 1,3-butanediol, and 1,4-butanediol, including those of the pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, and , at infinite dilution, and excess partial molar volumes, and , at infinite dilution were calculated. The variation of these parameters with composition and temperature of the mixtures are discussed in terms of molecular interactions in these mixtures. The partial molar expansivities, and , at infinite dilution and excess partial molar expansivities, and , at infinite dilution were also calculated. The V m E values were found to be positive for all the mixtures at each temperature studied, except for FA + 1-butanol which exhibits a sigmoid trend wherein V m E values change sign from positive to negative as the concentration of FA in the mixture is increased. The V m E values for these mixtures follow the order: 1-butanol < 2-butanol < 1,3-butanediol < 1,4-butanediol. It is observed that the V m E values depend upon the number and position of hydroxyl groups in these alkanol molecules.  相似文献   

19.
New experimental data on the density of three (0.2393, 0.4856 and 0.7390 mole fraction of ethylbenzene) binary n-heptane+ethylbenzene mixtures have been measured with a constant-volume piezometer immersed in a precision liquid thermostat. These new experimental data covering a temperature range from 306 to 527 K and a pressure range of 0.1 to 11 MPa. The experimental data reported here have an uncertainty less than 0.06% for the density, 0.05% for the pressure, 15 mK for the temperature, and 0.012% for the concentration. Excess molar volumes were derived using measured values of density for the mixtures and for the pure components calculated with reference equation of state for n-heptane (Span and Wagner, 2003) and for the pure ethylbenzene (Frenkel et al., 2005). The derived values of excess molar volumes at atmospheric pressure were compared with the values reported by other authors in the literature. The effect of pressure on the excess molar volumes was studied.  相似文献   

20.
In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar™ digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich–Kister equation. The Redlich–Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号