首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn(II), Co(II) and Ni(II) complexes with some 5-substituted-1,3,4-thiadiazoles (L1-L4) have been prepared and characterized by conductivity, microanalysis, thermal analysis, infrared and electronic spectra measurements. All complexes behave as 1:1 electrolyte and the ligands are coordinated as bidentate molecules. The stability constants and energy of formation are determined and discussed on the basis of the ligands structure.  相似文献   

2.
Complexation in the Co(II)–H6X–H2O, Ni(II)–H6X–H2O, and Co(II)–Ni(II)–H6X–H2O systems (H6X is nitrilotrimethylenephosphonic acid) was studied by spectrophotometry. The formation of binuclear complexonates Ni2H2X · 7H2O, Co2H2X · 5H2O, and NiCoH2X · 6H2O was demonstrated. These compounds were isolated from the solution, their composition was determined, the thermal stability was studied, and the kinetic parameters of dehydration were calculated.  相似文献   

3.
New [ML(H2O)2] complexes (M = Co2+, Ni2+, or Cu2+; H2L = diphenylthiocarbazide) were synthesized and studied using IR and diffuse reflection electronic spectroscopy, magnetic chemistry, conductometry, and DTA. The metals were shown to coordinate L2–through nitrogen and sulfur atoms. The complex [CuL(H2O)2] is a dimer.  相似文献   

4.
N-Unsubstituted azoles (1,2,4-triazole, 3-amino-1,2,4-triazole) and 5-R-tetrazoles (R = H, CH3, C2H5, C4H9, CH = CH2, C6H5, p-CH3C6H4, NH2) form water-soluble polymeric complexes in systems containing certain transition metal salts. The data obtained and the results of MP2/6-31G* * calculations of the electronic structures of 5-R-tetrazolate anions show that the ability of azoles for formation of polymeric complexes with transition metal ions is mostly determined by the acid-base properties of azoles. The geometric structure of a polymeric chain with the Co2+ ion having the coordination number 6 and the 5-methyltetrazolate anion being a bridging ligand was examined at the STO-3G level. It was shown that the coordination by the 2- and 3-nitrogen atoms of the tetrazole ring is most favored by energy.  相似文献   

5.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

6.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula (M(CH3-xClxCOO)2QuinNO) (when M=Co(II), Ni(Il); X=l, 2 and 3 and when M=Cu(II), X=1 and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCl3COO)2 (QuinNO)3]. The adducts isolated are soluble in common organic solvents.  相似文献   

7.
The new orotic acid complexes, [MCl2(H2O)3(H3Or)], M=Co(II), Ni(II) and [CuCl2(H2O)(H3Or)3] · H2O, were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral (Diffuse reflectance UV–Vis and FTIR) methods, and simultaneous thermal analysis (TG, DTG and DTA) techniques. Physical measurements indicate that the neutral orotic acid ligands are bonded to metal ions through the carbonyl groups. Two thermal processes of the complexes can occur: dehydration and pyrolytic decomposition. On the basis of the DTGmax, the thermal stability of the complexes follows the order: Co(II) (122 °C) > Cu(II) (77 °C) > Ni(II) (66 °C).  相似文献   

8.
The complex-formation equilibria of 2-hydroxypropylene-1,3-diamine-N,N,N',N'-tetraacetic acid (H4L) with Co2 + and Ni2 + ions were studied. The stability constants of the complexes CoL2 -, CoHL-, NiL2 -, and NiHL- were estimated; the resulting data were compared with respective data for related compounds.  相似文献   

9.
Summary N-formamidosalicylaldimine (H2SF) andN-acetamidosalicylaldimine (H2SA) complexes of CuII, NiII and CoII have been synthesized and characterized by analytical, spectroscopic and magnetic data. The ligands coordinate to the metalvia the hydroxyl, carbonyl and imino groups to yield normal paramagnetic and insoluble complexes which decompose above 250°.  相似文献   

10.
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff bases derived from o-aminobenzoic acid with salicylaldehyde and its 5-chloro and 5-bromo derivatives have been prepared. The 1:1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility and electronic spectra of Cu(II) complexes indicate the nonplanar binuclear structures while that of Ni(II) and Co(II) show their paramagnetic octahedral geometry. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type (Cu·L)2, Ni·L·3H2O and Co·L·3H2O are formed having solvent molecule in coordination with the metal ion. The monopyridine and monoammonia adducts of Cu(II) complexes were found to be monomeric.  相似文献   

11.
12.
Bis(macrocyclic)dinickel(II) complexes containing phenylene bridges between 16-membered pentaaza macrocyclic subunits have been synthesized via one-pot template condensation of nitrogen–nitrogen linker (1,4-phenylenediamine; benzidine; 4,4′-diaminodiphenylmethane; 4,4′-diaminodiphenylether; 4,4′-diaminodiphenylsulfone), formaldehyde, 1,3-diaminopropane, nickel(II) and 2,4-pentanedione in a 1:4:4:2:2 molar ratio. Elemental analyses, i.r., u.v.–vis, H-n.m.r. spectroscopy, cyclic voltametry, conductometric and magnetic measurements have been used to characterize the new complexes.  相似文献   

13.
Binuclear copper, nickel and cobalt complexes of the Schiff-bases obtained by condensation of glycylglycine with acetylacetone, benzoylacetone, dibenzoylmethane and thenoyltrifluoroacetone were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, i.r., u.v.–vis. spectra, e.s.r., X-ray diffraction, t.g.a., d.t.a. and d.s.c. thermal analysis. All the complexes are non-electrolytes with low magnetic moments that indicate spin–spin or antiferromagnetic exchange interactions. Spectral properties support square planar and square pyramidal or trigonal bipyramidal structure provided by the N2O2 chromophores. E.s.r. spectra of the copper complex confirm the binuclear structure and the presence of magnetic interaction. Thermal studies supported the chemical formulation of these complexes and showed that they decompose in three to four steps depending on the type of ligand. Activation energies Ea and enthalpies ΔH, associated with the thermal decomposition of the complexes were calculated and correlated with the type of complexed metal. A mechanism for thermal decomposition is proposed for the complexes.  相似文献   

14.
Six complexes, M(HL)2 · nH2O (M=Co, Ni and Fe; n=4) with two ligands, 2-carboxy-benzaldehydebenzoylhydrazone (H2L1) and 2-carboxybenzaldehyde-(4′-methoxy)benzoylhydrazone (H2L2), have been synthesized and characterized on the basis of elemental analyses, molar conductivities, i.r. spectra and thermal analyses. In addition, the suppression ratio for O2- (a) and the suppression ratio for OH· (b) were determined with a 72 spectrophotometer. The 50% inhibition [IC50 (a) and IC50 (b)] of the complexes were studied. This study demonstrated that the complexes have activity in the suppression of O2- (a) and OH· (b). In general, the antioxidative activities increased as the concentration of these complexes increased up to a selected extent. The complexes exhibit more effective antioxidants than the ligands and the series of the ligand (H2L2) are better than the series of the ligand (H2L1) do.  相似文献   

15.
Some cobalt(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (HL) have been prepared and studied by infrared and electronic spectra and by magneto-chemical and conductometric measurements. The ligand is coordinated through the unprotonated ring-nitrogen atom and in one case also through the carbonylic oxygen atom. The “blue” complexes [CoX2 · 2HL] (X2 = Cl2, ClBr, Br2, (NCS)2) and [CoX2 · 2HL] · 2HL (X = Cl, Br) have a distorted C2v [CoX2N2] coordination; the thiocyanate ion is N-bonded to the metal. The “green” complexes CoX2 · 2HL (X = Cl(4H2O), Br) have a square-pyramidal [CoX2N2O] coordination. The “pink” CoX2 · 4HL · nH2O (X = ClO4, n = 2; X = BF4, n = 8; X = F3Ac, n = 4) and “cream” CoX2 · 4HL · 6 H2O (X = I, ClO4) complexes have an octahedral coordination; only the F3Ac? ion is coordinated. The “cyclamen” CoAcL · 2HL · 2 H2O and Co3Ac4L2 · 2HL · 2H2O complexes have a polynuclear constitution; the Ac? ion behaves as bidentate ligand.  相似文献   

16.
17.
The proton nmr isotropic shifts of pyridine type ligands coordinated to paramagnetic nickel(II) and cobalt(II) acetylacetonate are reported, and the mechanisms of unpaired electron spin delocalization in these complexes are discussed. It is found that a σ-delocalization mechanism is in dominant, but the π-contribution can not be rule out. The calculations of the geometric factor for Co(II) complexes are done. It is used in the ratio method to separate the contribution of pseudo-contact shift from isotropic shift for Co(II) complexes. The effect of pseudoaromatic chelate ring on contact shift is not so large as previously reported.  相似文献   

18.
Mononuclear macrocyclic complexes of manganese(II ), cobalt(II ) and nickel(II ) perchlorate using 10 different oxaazamacrocyclic ligands (L1 — L10) have been prepared and characterized. The complexation reactions with the diiminic ligands were obtained by template condensation of the appropriate dialdehyde and diamine precursors; the reduced macrocycle complexes were synthesized using a direct route. The complexes have been characterized by elemental analyses, molar conductivity, mass spectrometry, IR, UV‐vis spectroscopy, diffuse reflectance and magnetic susceptibility measurements.  相似文献   

19.
20.
Several new mixed ligand complexes of Ni(II) and Co(II) of p-tolylsalicylaldimine (Sal-TH) or p-anisylsalicylaldimine (Sal-AH) with 8-hydroxyquinoline (HOx), benzohydroxamic acid (BH2) or α-picoline (α-pic) have been synthesized. The complexes have the general formulae: [M(Sal-T)L],[M(Sal-A)L]⋅H2O or [Ni(Sal-T)2(α-pic)2]⋅H2O where M=Ni(II) or Co(II), Sal-T=p-tolylsalicylaldiminate, Sal-A=p-anisylsalicylaldiminate, L=8-hydroxyquinolinate or benzohydroxamate and α-pic=α-picoline. Analytical, conductivity and spectral data support a square planar structure for Co(II) complexes and octahedral structure for Ni(II) complexes. The thermal behaviour of the complexes has been studied by TG and DTG techniques. It was proposed that the decomposition of the complexed Schiff base takes place via a radical mechanism while for 8-hydroxyquinolinate or benzohydroxamate via proton transfer. Kinetic parameters of the thermal decomposition process have been computed by means of Coats-Redfern and Horowitz-Metzger methods. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号