首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We introduce a simple random fractal based on the Sierpinski gasket and construct a Brownian motion upon the fractal. The properties of the process on the Sierpinski gasket are modified by the random environment. A sample path construction of the process via time truncation is used, which is a direct construction of the process on the fractal from the associated Dirichlet forms. We obtain estimates on the resolvent and transition density for the process and hence a value for the spectral dimension which satisfiesd s=2d f/dw. A branching process in a random environment can be used to deduce some of the sample path properties of the process.  相似文献   

2.
In this paper, we prove the semi‐circular law for the eigenvalues of regular random graph Gn,d in the case d, complementing a previous result of McKay for fixed d. We also obtain a upper bound on the infinity norm of eigenvectors of Erd?s–Rényi random graph G(n,p), answering a question raised by Dekel–Lee–Linial. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

3.
On the bounded Sierpinski gasket F we use the set of essential fixed points V 0 as a boundary and consider the fractal Brownian motion on F killed in V 0. The corresponding Dirichlet–Laplacian is described in terms of a kind of hyperbolic distance, a metric which explodes near the boundary. We consider Harnack inequalities, Green’s function estimates and (random) products of matrices defining the local energy of harmonic functions. Supported by the DFG research group ‘Spektrale Analysis, asymptotische Verteilungen und stochastische Dynamik.’  相似文献   

4.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

5.
Let (G n ) n=1 be a sequence of finite graphs, and let Y t be the length of a loop-erased random walk on G n after t steps. We show that for a large family of sequences of finite graphs, which includes the case in which G n is the d-dimensional torus of size-length n for d≥4, the process (Y t ) t=0, suitably normalized, converges to the Rayleigh process introduced by Evans, Pitman, and Winter. Our proof relies heavily on ideas of Peres and Revelle, who used loop-erased random walks to show that the uniform spanning tree on large finite graphs converges to the Brownian continuum random tree of Aldous. Supported in part by NSF Grant DMS-0504882.  相似文献   

6.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

7.
We solve a problem of Krivelevich, Kwan and Sudakov concerning the threshold for the containment of all bounded degree spanning trees in the model of randomly perturbed dense graphs. More precisely, we show that, if we start with a dense graph Gα on n vertices with δ(Gα) ≥ αn for α > 0 and we add to it the binomial random graph G(n,C/n), then with high probability the graph GαG(n,C/n) contains copies of all spanning trees with maximum degree at most Δ simultaneously, where C depends only on α and Δ.  相似文献   

8.
Let G3‐out denote the random graph on vertex set [n] in which each vertex chooses three neighbors uniformly at random. Note that G3‐out has minimum degree 3 and average degree 6. We prove that the probability that G3‐out is Hamiltonian goes to 1 as n tends to infinity. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

9.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

10.
We consider a random graph that evolves in time by adding new edges at random times (different edges being added at independent and identically distributed times). A functional limit theorem is proved for a class of statistics of the random graph, considered as stochastic processes. the proof is based on a martingale convergence theorem. the evolving random graph allows us to study both the random graph model Kn, p, by fixing attention to a fixed time, and the model Kn, N, by studying it at the random time it contains exactly N edges. in particular, we obtain the asymptotic distribution as n → ∞ of the number of subgraphs isomorphic to a given graph G, both for Kn, p (p fixed) and Kn, N (N/(n2)→ p). the results are strikingly different; both models yield asymptotically normal distributions, but the variances grow as different powers of n (the variance grows slower for Kn, N; the powers of n usually differ by 1, but sometimes by 3). We also study the number of induced subgraphs of a given type and obtain similar, but more complicated, results. in some exceptional cases, the limit distribution is not normal.  相似文献   

11.
We show that if pn ? log n the binomial random graph Gn,p has an approximate Hamilton decomposition. More precisely, we show that in this range Gn,p contains a set of edge‐disjoint Hamilton cycles covering almost all of its edges. This is best possible in the sense that the condition that pn ? log n is necessary. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

12.
For 0 < p < 1 and q > 0 let Gq(n,p) denote the random graph with vertex set [n]={1,…,n} such that, for each graph G on [n] with e(G) edges and c(G) components, the probability that Gq(n,p)=G is proportional to . The first systematic study of Gq(n,p) was undertaken by 6 , who analyzed the phase transition phenomenon corresponding to the emergence of the giant component. In this paper we describe the structure of Gq(n,p) very close the critical threshold. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

13.
In this paper we present an estimation for the diameter of random subgraph of a hypercube. In the article by A. V. Kostochka (Random Struct Algorithms 4 (1993) 215–229) the authors obtained lower and upper bound for the diameter. According to their work, the inequalities n + mpD(Gn) ≤ n + mp + 8 almost surely hold as n → ∞, where n is dimension of the hypercube and mp depends only on sampling probabilities. It is not clear from their work, whether the values of the diameter are really distributed on these 9 values, or whether the inequality can be sharpened. In this paper we introduce several new ideas, using which we are able to obtain an exact result: D(Gn) = n + mp (almost surely). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

14.
Summary Let G be the group generated by L free involutions, whose Cayley graph T is the infinite homogeneous tree with L edges at every node. A general central limit theorem and law of the iterated logarithm is proven for left-invariant random walks Z n on G or T which applies to the distance of Z n from a fixed point, as well as to the distribution of the last R letters in Z n . For nearest neighbor random walks, we also derive a generating function identity that yields formulas for the asymptotic mean and variance of the distance from a fixed point. A generalization for Z n with a finitely supported step distribution is derived and discussed.Partially supported by grant NSF MCS85-04315  相似文献   

15.
We study a generalization of the Turán problem in random graphs. Given graphs T and H, let ex(G(n,p),T,H) be the largest number of copies of T in an H‐free subgraph of G(n,p). We study the threshold phenomena arising in the evolution of the typical value of this random variable, for every H and every 2‐balanced T. Our results in the case when m2(H) > m2(T) are a natural generalization of the Erd?s‐Stone theorem for G(n,p), proved several years ago by Conlon‐Gowers and Schacht; the case T = Km was previously resolved by Alon, Kostochka, and Shikhelman. The case when m2(H) ≤ m2(T) exhibits a more complex behavior. Here, the location(s) of the (possibly multiple) threshold(s) are determined by densities of various coverings of H with copies of T and the typical value(s) of ex(G(n,p),T,H) are given by solutions to deterministic hypergraph Turán‐type problems that we are unable to solve in full generality.  相似文献   

16.
Consider a particle that moves on a connected, undirected graphG withn vertices. At each step the particle goes from the current vertex to one of its neighbors, chosen uniformly at random. Tocover time is the first time when the particle has visited all the vertices in the graph starting from a given vertex. In this paper, we present upper and lower bounds that relate the expected cover time for a graph to the eigenvalues of the Markov chain that describes the random walk above. An interesting consequence is that regular expander graphs have expected cover time (n logn).This research was done while this author was a postdoctoral fellow in the Department of Computer Science, Princeton University, and it was supported in part by DNR grant N00014-87-K-0467.  相似文献   

17.
We study two problems related to the existence of Hamilton cycles in random graphs. The first question relates to the number of edge disjoint Hamilton cycles that the random graph G n,p contains. δ(G)/2 is an upper bound and we show that if p ≤ (1 + o(1)) ln n/n then this upper bound is tight whp. The second question relates to how many edges can be adversarially removed from G n,p without destroying Hamiltonicity. We show that if pK ln n/n then there exists a constant α > 0 such that whp GH is Hamiltonian for all choices of H as an n-vertex graph with maximum degree Δ(H) ≤ αK ln n. Research supported in part by NSF grant CCR-0200945. Research supported in part by USA-Israel BSF Grant 2002-133 and by grant 526/05 from the Israel Science Foundation.  相似文献   

18.
Consider K ≥ 2 independent copies of the random walk on the symmetric group SN starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in \mathbb{N}$, let Gn be the subgroup of SN generated by the K positions of the chains. In the uniform transposition model, we prove that there is a cut‐off phenomenon at time N ln(N)/(2K) for the non‐existence of fixed point of Gn and for the transitivity of Gn, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non‐existence of a fixed point of Gn appears at time of order $N^{1+\frac{2}{K}}$ (at least for K ≥ 3), but there is no cut‐off phenomenon. In the latter model, we recover a cut‐off phenomenon for the non‐existence of a fixed point at a time proportional to N by allowing the number K to be proportional to ln(N). The main tools of the proofs are spectral analysis and coupling techniques. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

19.
The behavior of the random graph G(n,p) around the critical probability pc = is well understood. When p = (1 + O(n1/3))pc the components are roughly of size n2/3 and converge, when scaled by n?2/3, to excursion lengths of a Brownian motion with parabolic drift. In particular, in this regime, they are not concentrated. When p = (1 ‐ ?(n))pc with ?(n)n1/3 →∞ (the subcritical regime) the largest component is concentrated around 2??2 log(?3n). When p = (1 + ?(n))pc with ?(n)n1/3 →∞ (the supercritical regime), the largest component is concentrated around 2?n and a duality principle holds: other component sizes are distributed as in the subcritical regime. Itai Benjamini asked whether the same phenomenon occurs in a random d‐regular graph. Some results in this direction were obtained by (Pittel, Ann probab 36 (2008) 1359–1389). In this work, we give a complete affirmative answer, showing that the same limiting behavior (with suitable d dependent factors in the non‐critical regimes) extends to random d‐regular graphs. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

20.
We prove that the coefficients of the so-called right 2-characteristic polynomial of a supermatrix over a Grassmann algebraG=G 0G 1 are in the even componentG 0 ofG. As a consequence, we obtain that the algebra ofn×n supermatrices is integral of degreen 2 overG 0. Partially supported by OTKA of Hungary, grant no. T16432.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号