首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the reaction of PhPdI(AsPh(3))(2) (formed via the fast oxidative addition of PhI with Pd(0)(AsPh(3))(2)) with a vinyl stannane CH(2)[double bond]CH[bond]Sn(n-Bu)(3) has been investigated in DMF. This reaction (usually called transmetalation step) is the prototype of the rate determining second step of the catalytic cycle of Stille reactions. It is established here that the transmetalation proceeds through PhPdI(AsPh(3))(DMF), generated by the dissociation of one ligand AsPh(3) from PhPdI(AsPh(3))(2). PhPdI(AsPh(3))(DMF) is the reactive species, which leads to styrene through its reaction with CH(2)[double bond]CH[bond]SnBu(3). Consequently, in DMF, the overall nucleophilic attack mainly proceeds via a mechanism involving PhPdI(AsPh(3))(DMF) as the central reactive complex and not PhPdI(AsPh(3))(2). The dimer [Ph(2)Pd(2)(mu(2)-I)(2)(AsPh(3))(2)] has been independently synthesized and characterized by its X-ray structure. In DMF, this dimer dissociates quantitatively into PhPdI(AsPh(3))(DMF), which reacts with CH(2)[double bond]CH[bond]SnBu(3). The rate constant for the reaction of PhPdI(AsPh(3))(DMF) with CH(2)[double bond]CH[bond]SnBu(3) has been determined in DMF for each situation and was found to be comparable.  相似文献   

2.
A recent claimed spectroscopic observation (by (1)H NMR) of 14-electron T-shaped 3-coordinated palladium complexes turns out to be a misinterpretation. A thorough study of the species formed by [PdRX(AsPh(3))(2)] (R=Ph, C(6)Cl(2)F(3); X=Cl, I) in different solvents (S=CDCl(3), THF, DMF) suggests that: 1) there is no NMR-detectable amount of [PdRX(AsPh(3))], and 2) in the presence of free arsine (AsPh(3)/[PdRX(AsPh(3))(2)] 2:1) the concentration of [PdRX(AsPh(3))(S)] is negligible. This clearly settles matters in the controversy of dissociative or associative pathways for the transmetalation step involved in the Stille coupling in favor of the latter: under catalytic conditions the dominant pathway is the associative reaction of the stannane with the square-planar complex [PdRX(AsPh(3))(2)].  相似文献   

3.
[reaction: see text] The species presumably involved in the associative ligand substitution mechanism for the Stille cross coupling of vinyl bromide and trimethylvinyl stannane with Pd(PMe(3))(2)/PMe(3) as catalysts in DMF (as ligand and solvent) have been structurally and energetically characterized. The cyclic four-coordinate transition state for the rate-determining transmetalation step explains the retention of configuration in the Stille coupling of chiral nonracemic alkyl stannanes.  相似文献   

4.
The transmetalation step of the Stille cross-coupling reaction catalyzed by PdL(2) (L = PH(3), AsH(3)) has been analyzed by means of DFT methods for PhBr as the electrophile and CH(2)=CHSnMe(3) as the nucleophile. Both experimentally proposed mechanisms (cyclic and open) were theoretically studied. For the case of the cyclic mechanism, the associative and dissociative ligand substitution alternatives were both analyzed. For the case of the open mechanism, the cis and the trans pathways were evaluated. All the reaction pathways were also studied taking into account the solvent effects by means of continuum models, for THF and PhCl as solvents. In selected cases, explicit solvent molecules were introduced to account for their potential role as ligands. Theoretical analysis indicates that the open reaction mechanism is preferred for organotriflate systems, whereas the cyclic mechanism is favored for the reaction with organohalide systems.  相似文献   

5.
Nongeminally substituted cyclic phosphazenes with various haloalkyl substituents were prepared using deprotonation-substitution reactions at the methyl groups of the cis isomers of nongeminally substituted cis-[Me(Ph)P=N]3, 2. Treatment of 2 with n-BuLi followed by reaction with organic halogenated reagents (RX=C2Cl6, BrC(O)CMe2Br, and ICH2COOEt) at low temperature afforded the various cyclic derivatives cis-[(XCH2)(Ph)PN]3 (3, X=Cl, 4, Br, and 5, I). The mono- and dibromoalkyl derivatives, cis-[Ph3(BrCH2)Me2P3N3], 6, and [Ph3(BrCH2)2MeP3N3], 7, were also isolated along with 4 when the electrophile was dibromoethane. Reaction of cis-[Ph(BrCH2)PN]3, 4, with KSC(O)Me gave cis-[Ph(MeC(O)SCH2)PN]3, 8. The structures of all the cis cyclic phosphazenes were determined by NMR spectroscopy and X-ray diffraction. All retained the basketlike shape with the hydrophobic phenyl groups opposite the haloalkyl groups on the P3N3 ring. Thermal analysis of the new cyclic trimers indicates that ring-opening polymerization does not occur. The melting points and the thermal stabilities of haloalkyl cyclophosphazenes were higher than those of the parent compound 2.  相似文献   

6.
A new series of new hetero-bimetallic complexes containing iron and ruthenium of the general formula [RuCl(CO)(B)(EPh3)(L)] (where E=P or As; B=PPh3, AsPh3, py or pip; L=ferrocene derived monobasic bidentate thiosemicarbazone ligand) have been synthesized by the reaction between ferrocene-derived thiosemicarbazones and ruthenium(II) complexes of the type [RuHCl(CO)(B)(EPh3)2] (where E=P or As; B=PPh3, AsPh3, py or pip). The new complexes have been characterized by elemental analyses, IR, electronic, NMR (1H, 13C and 31P), EXAFS (extended X-ray absorption fine structure spectroscopy) and cyclic voltammetric techniques. Antibacterial activity of the new complexes has been screened against Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa species.  相似文献   

7.
When trans-[NiRf2L2] (Rf = 3,5-C6Cl2F3; L = group 15 soft monodentate weak ligand such as SbPh3 or AsPh3) is dissolved in wet (CD3)2CO, isomerization (to give cis-[NiRf2L2]) and subsequent substitutions of L by (CD3)2CO or by water occur, and several complexes containing acetone and aqua ligands are formed. The isomerization takes place in a few seconds at room temperature. The substitution reactions on the cis isomer formed are faster. The kinetics of the equilibria between all of the participating species have been studied by 19F exchange spectroscopy experiments at 217 K, and the exchange rates and rate constants have been calculated. These data reflect the weakness of acetone compared to water and AsPh3. The data obtained are the first available for square-planar nickel(II) aquacomplexes. The bulkier AsCyPh2 ligand slows down the exchange processes while the displacement of AsMePh2 is clearly disfavored. Activation entropy studies support an associative ligand substitution. All of these data fit well with the previously reported relative activity of these complexes as catalysts in norbornene polymerization.  相似文献   

8.
Synthesis of the cyclic aluminatophosphazene ring N(PCl2NMe)2AlMeCl (5) has been achieved via a skeletal transmetalation reaction between AlMe3 and the boratophosphazene N(PCl2NMe)2BCl2 (1). Reaction of 5 with various halogenated Lewis acids such as GaCl3 yielded the fully chlorinated aluminum heterocycle N(PCl2NMe)2AlCl2 (8) through a methyl-halogen exchange process. In contrast, treatment of 5 with excess AlMe3 resulted in complete methylation at aluminum to give N(PCl2NMe)2AlMe2 (6). Compound 5 was reacted with various Ag+ salts with weakly coordinating anions, including Ag[OSO2CF3], which afforded the triflate-substituted heterocycle N(PCl2NMe)2AlMe(OSO2CF3) (9). The reaction of 5 with Ag[BF4] surprisingly produced the previously known fluorinated boratophosphazene N(PCl2NMe)2BF2 (10). The transformation of 1 to 5 and then to 10 represents a rare, formally reversible, skeletal transmetalation process involving boron and aluminum. Treatment of 5 with Ag[PF6] led to the insertion of phosphorus in place of aluminum to form the novel zwitterionic fluorinated phosphorus(V) heterocycle N(PCl2NMe)2PF4 (11). The ethyl-substituted aluminatophosphazene N(PCl2NMe)2AlMeEt (14) reacted cleanly with a 1:1 mixture of [Ph3C][B(C6F5)4] and THF to give the novel donor-stabilized alumazine-phosphazene hybrid cation, [7.THF]+, as the [B(C6F5)4]- salt [N(PCl2NMe)2AlMe.THF][B(C6F5)4] (15).  相似文献   

9.
The use of group 6 metal-carbene complexes in inter- and intramolecular carbene transfer reactions has been studied. Thus, pentacarbonyl[(aryl)(methoxy)carbene]chromium(0) and tungsten complexes, 10, efficiently dimerize at room temperature in the presence of diverse Pd(0) and Pd(II)/Et(3)N catalysts. The effect of additives (PPh(3), AsPh(3), or SbPh(3)) on the nature and the isomeric ratio of the reaction products is negligible. The nature of the reaction products is more catalyst-dependent for metal carbenes 12 bearing alkyl groups attached to the carbene carbon. In these cases, either carbene ligand dimerization or beta-hydrogen elimination reactions are observed, depending on the catalyst. The carbene ligand dimerization reaction can be used to prepare conjugated polyenes, including those having metal moieties at both ends of the polyene system, as well as enediyne derivatives. The intramolecular carbene ligand dimerization of chromium bis-carbene complexes 28 and 30 allows the preparation of mono- and bicyclic derivatives, with ring sizes from six to nine members. For bis-carbene derivatives the beta-hydrogen elimination reaction is inhibited, provided that both metal centers are tethered by an o-xylylene group. Other alkyl complexes 32 form new mononuclear carbene complexes 37 or decompose to complex reaction mixtures. The results obtained in these reactions may be explained by transmetalation from Cr(0) to Pd(0) and the intermediacy of Pd-carbene complexes. Aminocarbene-chromium(0) complexes 15, need harsher reaction conditions to transfer the carbene ligand, and this transfer occurs only in the presence of deactivated olefins. The corresponding insertion/hydrolysis products 48 resulted in these cases. A catalytic cycle involving transmetalation from a chromacyclobutane to a palladacyclobutane is proposed to explain these results.  相似文献   

10.
Amines used as bases in copper-free, palladium-catalyzed Sonogashira reactions play a multiple role. The oxidative addition of iodobenzene with [Pd(0)(PPh(3))(4)] is faster when performed in the presence of amines (piperidine>morpholine). Amines also substitute one ligand L in trans-[PdI(Ph)(L)(2)] (L=PPh(3), AsPh(3)) formed in the oxidative addition. This reversible reaction, which gives [PdI(Ph)L(R(2)NH)], is favored in the order AsPh(3)>PPh(3) and piperidine>morpholine. Two mechanisms are proposed for Sonogashira reactions, depending on the ligand and the amine. When L=PPh(3), its substitution by the amine in trans-[PdI(Ph)(PPh(3))(2)] is less favored than that of the alkyne. A mechanism involving prior coordination of the alkyne is suggested, followed by deprotonation of the ligated alkyne by the amine. When L=AsPh(3), its substitution in trans-[PdI(Ph)(AsPh(3))(2)] by the piperidine is easier than that by the alkyne, leading to a different mechanism: substitution of AsPh(3) by the amine is followed by substitution of the second AsPh(3) by the alkyne to generate [PdI(Ph)(amine)(alkyne)]. Deprotonation of the ligated alkyne by an external amine leads to the coupling product. This explains why the catalytic reactions are less efficient with AsPh(3) than with PPh(3) as ligand.  相似文献   

11.
Various steroid analogues were synthesized by Stille coupling of bicyclo[4.3.0]nonenylstannanes cis-/trans-8 and 14 with cyclohexenol triflates 17 and 18 and subsequent Diels-Alder reactions of the resulting dienes. The enantiomerically pure bicyclo[4.3.0]nonenylstannanes cis- and trans-8 were prepared in good yields via the enol triflates cis- and trans-7, obtained from the bicyclo[4.3.0]non-2-en-3-one 5. The alkenylstannane 14 was obtained from the [2+2] cycloadduct 10 a produced from addition of dichloroketene to the enantiomerically pure and protected bishydroxycyclohexadiene 9 a (65 %). Treatment of 10 a with diazomethane, reduction of the dichloromethylene group, and trapping with tributyltin chloride after lithium-for-bromine exchange, yielded the bicyclo[4.3.0]nonenylstannane 14 (23 % over four steps). Stille couplings provided the tricyclic dienes cis-/trans-19 in good yields (73-77 %), whereas the tricyclic diene 20 was obtained in only 34 % yield at best. Diels-Alder reactions of trans-19 with various reactive dienophiles yielded the novel steroidal compounds trans-21 to trans-26 with complete diastereoselectivity. Heating the dienes cis-19 or 20 with maleic acid derivatives provided the corresponding tetracycles cis-23alpha,beta and 27alpha,beta with a cis-C,D ring junction, each as mixtures of two diastereomers. Less reactive dienophiles required higher temperatures to promote the relevant cycloaddition with trans-19 to furnish several stereoisomeric forms of trans-28 and trans-29 in significantly lower yields (31-45 %). The selected steroid analogues trans-22 and trans-23 were deprotected in two steps by using acid catalysis to provide trans-31 and trans-33 (91 and 80 % over two steps). Cyclopropanation of trans-30 yielded the cyclopropasteroid analogue 34 (74 %), treatment of which with trifluoroacetic acid furnished the cyclopropasteroid 35 and the 2-methyl-substituted steroid analogue 36 in 40 and 12 % yield, respectively. Aromatic B-ring steroids 38 (69 %) and 39 (5 %) were accessed by dehydrogenation of trans-24 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.  相似文献   

12.
Berkowitz DB  Wu B  Li H 《Organic letters》2006,8(5):971-974
[STRUCTURE: SEE TEXT] Pd(II)-mediated rearrangement of allylic N-PMP (p-methoxyphenyl) trifluoroacetimidates provides the first formal sigmatropic route to quaternary, alpha-vinylic amino acids, potential suicide substrates for PLP enzymes. The amino acid side chains enter via transition-metal-mediated C-C bond constructions, including (i) Cu(I)-mediated conjugate addition (Ala); (ii) Pd(0)/AsPh3-mediated Stille coupling (allyl-Gly, Phe, DOPA, m-Tyr); and (iii) Pd(0)/Pt-Bu3-mediated Negishi coupling (Leu). In the synthesis of the DOPA decarboxylase inactivator, alpha-vinyl-m-tyrosine, the new N-PMP trifluoroacetimidate rearranges much more efficiently than the corresponding trichloroacetimidate.  相似文献   

13.
New stereoregular cyclic polysilanols of the general formula [PhSi(O)OH]n (n = 6 and 12) have been selectively obtained in high yields by the reaction of cagelike oligophenylmetallasiloxanes with dilute solutions of hydrochloric acid at low temperatures. An alternative method was used to prepare cis-[PhSi(O)OH](4) from sodium phenylsiloxanolate, cis-[(Na(+))(4)[PhSi(O)O(-)](4)].(1-butanol)(x). All compounds were fully characterized by NMR and IR spectroscopy and molecular weight determinations. The structure of cis-[PhSi(O)OH](6) was confirmed by single-crystal X-ray analysis. Furthermore, a series of stereoregular cyclosiloxanes containing triorganylsiloxy groups at each silicon atom was prepared by the reactions of the cyclic polysilanols with triorganylchlorosilanes Me(3)SiCl, Me(2)ViSiCl, and Me(2)(CH(2)Cl)SiCl.  相似文献   

14.
Mukai C  Takahashi Y 《Organic letters》2005,7(26):5793-5796
[reaction: see text] The Stille coupling of N-acyl-2-iodoanilines with the 1-(tributylstannyl)-1-substituted allenes affected the successive one-step formation of the 2-methyl-3-substituted indoles. Alternatively, the other type of 2-alkyl-3-substituted indoles could be synthesized in a one-pot operation, which consists of the Stille coupling reaction with the 1-(tributylstannyl)-1,3-disubstituted allenes, followed by TBAF treatment. This procedure could be applied to the synthesis of indomethacin.  相似文献   

15.
The mechanism of the transmetalation step in the metal-carbon bond-formation process catalyzed by palladium complexes has been studied by spectroscopic and kinetic methods. The reaction of properly designed model complexes [structure: see text], resulting from oxidative addition of a Mo-I moiety to a palladium center, with aryltributyltinacetylides Bu(3)Sn-C [triple bond] C-(p-XC(6)H(4)) (11a, X = H; 11b, X = Cl) yields the products of transmetalation [structure: see text] (5a,b). The reaction, which shows a strong dependence on the nature of the phosphine ligand PR(3) (Ph > Bu > Me) and less so on the nature of the p-substituent X group, proceeds through two competing pathways, depending on the initial concentration of substrate. At high [3] (approximately equal to 10(-2) M), the transmetalation proceeds through an intermediate species (12) formed by the interaction of complex 3 with 11a. This associative complex accumulates in the presence of added PPh(3) and has been characterized spectroscopically. At low [3] (approximately equal to 10(-4) M), the reaction rate shows an inverse dependence on the concentration of the complex. This is due to the formation of a solvent-coordinate species (13), in which PPh(3) has been substituted by a dimethylformamide (DMF) molecule, as shown by UV-vis and (31)P NMR spectroscopy. Values of k(obs) depend on the concentration and nature of the aryltributyltinacetylides, in agreement with the existence of a kinetically detectable intermediate. A dimeric iodide bridged complex [structure: see text](14) has been obtained during attempts at isolating 13, which changes quantitatively into 13 upon dissolution in DMF and reacts with 11a to give the transmetalation product.  相似文献   

16.
The palladium-catalyzed Suzuki cross-coupling reaction of arylboronic acids and 6-bromo- and 6,8-dibromo-3,4-dihydropyrrolo[1,2-a]pyrazines afforded 6-substituted and 6,8-disubstituted 3,4-dihydropyrrolo[1,2-a]pyrazines in good yields. Stille and Negishi coupling reactions have been used to prepare 6-heteroaryl-substituted derivatives in moderate yields by employing heteroaryl halides and 6-metalated 3,4-dihydropyrrolo[1,2-a]pyrazines as reaction partners. A variety of cyclic secondary amines have also been incorporated at position C-6 of 6-bromo-1-phenyl-3,4-dihydropyrrolo[1,2-a]pyrazine in the presence of the palladium catalyst Pd(2)(dba)(3) in conjunction with BINAP as ligand. This amination reaction is one of the few reported examples of such a palladium-catalyzed transformation on a pyrrole ring, although the reaction could not be extended to less nucleophilic amines.  相似文献   

17.
meso-Tetrakis(p-tolyl)porphyrinatoruthenium(II) carbonyl, [Ru(II)(TTP)(CO)], can effect intermolecular sulfonium and ammonium ylide formation by catalytic decomposition of diazo compounds such as ethyl diazoacetate (EDA) in the presence of allyl sulfides and amines. Exclusive formation of [2,3]-sigmatropic rearrangement products (70-80% yields) was observed without [1,2]-rearrangement products being detected. The Ru-catalyzed reaction of EDA with disubstituted allyl sulfides such as crotyl sulfide produced an equimolar mixture of anti- and syn-2-(ethylthio)-3-methyl-4-pentenoic acid ethyl ester. The analogous "EDA + N,N-dimethylcrotylamine" reaction afforded a mixture of anti- and syn-2-(N,N-dimethylamino)-3-methyl-4-pentenoic acid ethyl esters with a diastereoselectivity of 3:1. The observed catalytic activity of [Ru(II)(TTP)(CO)] for the ylide [2,3]-sigmatropic rearrangement is comparable to the reported examples involving [Rh(2)(CH(3)CO(2))(4)] and [Cu(acac)(2)] as catalyst. Similarly, cyclic sulfonium and ammonium ylides can be produced by intramolecular reaction of a diazo group tethered to allyl sulfides and amines under the [Ru(II)(TTP)(CO)]-catalyzed reaction conditions. The subsequent [2,3]-sigmatropic rearrangement of the cyclic ylides furnished 2-allyl-substituted sulfur and nitrogen heterocycles in good yields (>90%). By employing [Ru(II)(TTP)(CO)] as catalyst, the cyclic ammonium ylide [2,3]-sigmatropic rearrangement reaction was successfully applied for the total synthesis of (+/-)-platynecine starting from cis-2-butenediol.  相似文献   

18.
The synthesis of several polycyclic compounds 1a-c, 2, and 3 has been performed through a tandem Stille/[4 + 2] cascade reaction from cyclic bis(enoltrifluomethanesulfonate) 4a-c, 5, and 6, respectively. The reaction proceeds very efficiently in a one-pot operation at roomtemperature in DMF in the presence of a catalytic amount of Pd(CH(3)CN)(2)Cl(2) and LiCl.[reaction: see text]  相似文献   

19.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

20.
[2 + 3] Cycloaddition reactions of the diazidoplatinum(II) complexes cis-[Pt(N3)2(PPh3)2] 1 and cis-[Pt(N3)2(2,2'-bipy)] 4 with organonitriles NCR 2 give the bis(tetrazolato) complexes trans-[Pt(N4CR)2(PPh3)2] 3 [R = Me (3a), Et (3b), Pr (3c), Ph (3d), 4-ClC6H4 (3e)] and cis-[Pt(N4CR)2(2,2'-bipy)] 5 [R = Me (5a), Et (5b), Pr (5c), Ph (5d)]. The reaction of cis-[Pt(N3)2(PPh3)2] I with propionitrile also affords, apart from 3b, the unexpected mixed cyano-tetrazolato complex trans-[Pt(CN)(5-ethyltetrazolato)(PPh3)2] 3b' which is derived from the reaction of the bis(tetrazolato) 3b with propionitrile, with concomitant formation of 5-ethyl-1H-tetrazole, via a suggested unusual oxidative addition of the nitrile to PtII. All these reactions are greatly accelerated by microwave irradiation and this method also shows a higher selectivity in the case of the reaction of propionitrile with 1, leading only to the formation of 3b. All the complexes obtained were characterized by IR, 1H, 13C and 31P[1H] (for complexes 3) NMR spectroscopies, FAB-MS and elemental analyses. Complexes 3b', 3d, 3e and 5d were also characterized by X-ray structural analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号