首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational state distributions and state-selected CM-frame angular distributions were measured for HCl (v' = 0, j') products from the reaction of Cl-atoms with tetramethylsilane (TMS) under single collision conditions at a collision energy, E(coll), of 8.2 +/- 2.0 kcal mol(-1). The internal excitation of these products was very low with only 2% of the total energy available partitioned into HCl rotation. A transition state with a quasi-linear C-H-Cl moiety structure was computed and used to explain this finding. A backward peaking differential cross section was also reported together with a product translational energy (T') distribution with a maximum at T' approximately E(coll). This scattering behaviour is accounted for by reactions proceeding through a tight transition state on a highly skewed potential energy surface, which favours collisions at low impact parameters with a strong kinematic constraint on the internal excitation of the products. The large Arrhenius pre-exponential factor previously reported for this reaction is reconciled with the tight differential scattering observed in our study by considering the large size of the TMS molecule.  相似文献   

2.
The reaction of Cl with HOCO has been examined using the coupled-cluster method to locate and optimize the critical points on the ground-state potential energy surface. The results show that the reaction produces the HCl and CO(2) products as experimentally observed. The reaction occurs via a HOC(O)Cl intermediate with an estimated heat of formation of -97.8+/-2.0 kcal/mol. A direct ab initio dynamics method has been used to provide insight into the reaction mechanisms and to determine the thermal rate coefficients in the temperature range of 200-600 K. At room temperature, the thermal rate coefficient is predicted to be 3.0x10(-11) cm(3) molecule(-1) s(-1) with an activation energy of -0.2 kcal/mol. Two kinds of reactive trajectories are found. One kind proceeds through short-lived HOC(O)Cl complexes with a lifetime of 310 fs while the other kind occurs via longer-lived intermediates with a lifetime of 1.9 ps.  相似文献   

3.
The dynamics of Cl atom reactions with methane, ethane, and methanol have been studied by calculation of quasi-classical trajectories, with computation of potential energies and gradients only at the geometries through which the trajectories pass. Trajectories were started from the transition state, with 2 kcal mol(-1) of energy given to the mode with an imaginary frequency (representing the reaction coordinate at the transition state) and inclusion of zero-point energy in some or all of the remaining vibrational modes. The trajectories were propagated as far as separated products, with the majority of potential energy calculations performed at the HF/6-31G level of theory. The rotational quantum state population distributions of the HCl products from the reactions of Cl atoms with methane, ethane and methanol peaked at J'=1, 2, and 6, respectively. The calculations thereby exhibit somewhat greater rotational excitation than is found experimentally, but correctly describe the trend of increasing HCl product rotation for the three respective reactions. In agreement with previous observations, only 4% of the energy available to the products of the reaction of Cl atoms with methane was channeled into CH3 radical internal energy, and 1% into HCl rotation, with 92% ending up as translational energy. For the reaction of Cl atoms with ethane and with methanol, the corresponding values for radical internal energy, HCl rotation and product translation are 21, 3, and 78%, and 46, 13, and 42%, respectively. For the latter two reactions, the radical internal energy is mostly accounted for by rotational motion. The clear increase in rotational excitation of the HCl products from the Cl atom reaction with methanol is explained in terms of a dipole-dipole interaction between the departing polar fragments. A smaller set of more computationally expensive trajectory calculations using potentials and gradients from the MP2/6-311G(d,p) level of theory were performed for reactions of Cl atoms with methanol, and give results in better agreement with experimentally measured HCl rotational excitation, consistent with the model of dipole-induced product rotation because the MP2/6-311G(d,p) calculations give smaller dipole moments for both products than the HF/6-31G calculations. The calculated angles between the rotational angular momentum vectors and recoil velocities of the radical peak sharply at 90 degrees for the reactions of Cl atoms with ethane and methanol, but exhibit a much broader distribution for reaction with methane.  相似文献   

4.
The thermal reaction between H and HCO was studied by classical trajectory calculations on an ab initio potential. The formation of H2+CO, the exchange of hydrogen atoms, and nonreactive encounters, proceeding either via direct or via complex-forming pathways, were separated. The reaction H+HCO-->H2+CO, with direct and complex-forming components, was found to have a low-pressure rate coefficient of 2.0(+/-0.15)x10(-10) cm3 molecule(-1) s(-1), being nearly independent of temperature between 200 and 1000 K. This value is in agreement with the recent experimental value of 1.83(+/-0.4)x10(-10) cm3 molecule(-1) s(-1). Thermal lifetime distributions of H2CO* complexes formed in the reaction are only weakly temperature dependent due to a compensation of energy and angular momentum effects.  相似文献   

5.
沈长圣  吴韬  居冠之  边文生 《化学学报》2001,59(11):1919-1924
用辛准经典轨迹法模拟了Cl+H2反应在mBW2势能面上的动力学行为。研究了各种初始条件下的反应碰撞截面,产物的能量分配,角度分布和态分布。另外,我们还比较了反应物的三种能量形式(平动能,转动能和振动能)对反庆的有效性。  相似文献   

6.
The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.  相似文献   

7.
Monte Carlo quasiclassical trajectory calculations have been carried out for the reaction Cl + Hl → HCl + I for 300, 1000, and 2000 K. A semi-empirical potential-energy surface (London equation) was obtained by “transfering” parameters from surfaces computed for other reaction systems. The computed results are in general accord with experimental measurements. Thermal rate coefficients, differential scattering cross sections, and product vibrational and rotational distributions were computed for the three temperatures. Angular scattering distributions are in agreement with experiment only at elevated temperatures.  相似文献   

8.
The reaction of HOCO with O atoms has been studied using a direct ab initio dynamics approach based on the scaling all correlation UCCD/D95(d,p) method. Ab initio calculations point to two possible reaction mechanisms for the O+HOCO-->OH+CO2 reaction. They are a direct hydrogen abstraction and an oxygen addition reaction through a short-lived HOC(O)O intermediate. The dynamics results show that only the addition mechanism is important under the conditions considered here. The lifetime of the HOC(O)O complex is predicted to be 172+/-15 fs. This is typical of a direct and fast radical-radical reaction. At room temperature, the calculated thermal rate coefficient is 1.44 x 10(-11) cm(3) mol(-1) s(-1) and its temperature dependence is rather weak. The two kinds of reactive trajectories are illustrated in detail.  相似文献   

9.
To analyze the F + CD4 gas-phase abstraction reaction, an exhaustive state-to-state dynamics study was performed. Quasi-classical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were used on an analytical potential energy surface (PES-2006) recently developed by our group for collision energies in the range 0.3-6.0 kcal mol-1. While the CD3 coproduct appears vibrationally and rotationally cold, in agreement with experiment, most of the available energy appears as FD(nu') product vibrational energy, peaking at nu' = 3, one unit colder than experiment. The excitation function reproduces experiment, with the maximum contribution from the most populated FD(nu' = 3) level. The state-specific scattering distributions at different collision energies also reproduce the experimental behavior, with a clear propensity toward forward scattering, this tendency increasing with the energy. These dynamics results show the capacity of the PES-2006 surface to correctly describe the title reaction.  相似文献   

10.
《Chemical physics》1987,111(1):21-31
Rotational excitation in collisions of atoms with diatomic molecules is investigated using classical mechanics. The structure of the fully resolved cross sections with respect to the final molecular angular momentum, its projection onto the quantization axis, and the scattering angle are studied numerically using simple model potentials. In particular the influence of isotropic and anistropic attractive forces is investigated. In the first case the structure of the cross section is still similar to that for repulsive scattering. Anistropic attraction introduces new phenomena whose relations to the properties of the potential are explored.  相似文献   

11.
The reaction Cl + H2CO → HCl + HCO has been studied at 295 K. Chlorine atoms were produced via the infrared laser induced dissociation of CCl3F, using a pulsed CO2 TEA laser. Using HCl infrared chemiluminescence as the diagnostic, we find the rate constant to be 7.4 ± 0.7 × 10?11 cm3/molecule sec, in good agreement with several recent studies. An evaluation of TEA laser photolysis as a technique for the generation of chlorine atoms is made, and the relationship of this experiment to recent theories of infrared laser induced chemistry is discussed.  相似文献   

12.
We present a global full dimensional potential energy surface (PES) for the Cl + O(3)→ ClO + O(2) reaction, which is an elementary step in a catalytic cycle that leads to the destruction of ozone in the stratosphere. The PES is constructed by interpolation of quantum chemistry data using the method developed by Collins and co-workers. Ab initio data points (energy, gradients and Hessian matrix elements) have been calculated at the UQCISD/aug-cc-pVDZ (unrestricted quadratic configuration interaction with single and double excitations) level of theory. The ab initio calculations predict a markedly non-coplanar (dihedral angle of 80°) transition state for the reaction, located very early in the reactant valley and slightly below the energy of the reactants as long as the spin-orbit splitting is neglected. Quasiclassical trajectory (QCT) calculations have been carried out at several collision energies to investigate the reaction dynamics. The QCT excitation function shows no threshold, displays a minimum at a collision energy of 2.5 kcal mol(-1), and then increases monotonically at larger collision energies. This behaviour is consistent with a barrierless reaction dominated by an oxygen-abstraction mechanism. The calculated product vibrational distributions (strongly inverted for ClO) and rate constants are compared with experimental determinations. Differential cross sections (DCS) summed over all final states are found to be in fairly good agreement with those derived from crossed molecular beam experiments.  相似文献   

13.
Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20–700 Torr of N2, air, or O2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl+C6H5I)=(3.3±0.7)×10−11 cm3 molecule−1 s−1 to give chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100%. The title reaction proceeds via a displacement mechanism (probably addition followed by elimination).  相似文献   

14.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001  相似文献   

15.
Relative-rate kinetic experiments were carried-out at T = 310 ± 3 K to determine rate constant ratios for the reactions of Br atoms with C2H6(1), CH2ClBr(2) and neo-C5H12(3). Br atoms were produced by stationary photolysis of Br2 and the consumption of the reactants was determined by gas-chromatography. k 2/k 1 = 1.174 ± 0.053 and k 3/k 1 = 0.458 ± 0.027 were determined (with 1σ precision given). The rate constant ratios were resolved to absolute k 1 values, and k 1(310 K) = (2.27 ± 0.30) × 105 cm3 mol−1 s−1 was recommended. The recommended k 1 was applied in a third law analysis providing Δf H o 298(C2H5) = (122.0 ± 1.9) kJ mol−1.  相似文献   

16.
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.  相似文献   

17.
The 355 nm photodissociation of Cl(2) trapped in a solid parahydrogen matrix at 2 K leads to the formation of isolated Cl photofragments. At these low temperatures (k(B)T approximately 1.4 cm(-1)), the Cl atoms can not react with the parahydrogen matrix since the reaction Cl + H(2)(v = 0, j = 0) --> HCl(v = 0, j = 0) + H is endothermic by 360 cm(-1). Irradiation of the Cl atom doped parahydrogen solid with broadband infrared radiation from 4000 cm(-1) to 5000 cm(-1) induces reaction of atomic Cl with the parahydrogen matrix to form HCl. The infrared-induced chemistry is attributed to solid parahydrogen absorptions that lead to the creation of vibrationally excited H(2)(v = 1), which supply the necessary energy to induce reaction. The kinetics of this low temperature infrared-induced reaction is studied using Fourier Transform infrared spectroscopy of the HCl reaction product. The HCl formation kinetics is first-order and the magnitude of the effective rate constant for the infrared-induced reaction depends on the properties of the near infrared radiation.  相似文献   

18.
We have investigated collisions between Ar and alkanethiolate self-assembled monolayers (SAMs) using classical trajectory calculations with several potential-energy surfaces. The legitimacy of the potential-energy surfaces is established through comparison with molecular-beam data and ab initio calculations. Potential-energy surfaces used in previous work overestimate the binding of Ar to the SAM, leading to larger energy transfer than found in the experiments. New calculations, based on empirical force fields that better reproduce ab initio calculations, exhibit improved agreement with the experiments. In particular, polar-angle-dependent average energies calculated with explicit-atom potential-energy surfaces are in excellent agreement with the experiments. Polar- and azimuthal-angle-dependent product translational energies are examined to gain deeper insight into the dynamics of Ar+SAM collisions.  相似文献   

19.
The reaction Cl + CH3CHO → HCl + CH3CO (1) was studied using flash photo‐lysis / tunable diode laser absorption spectroscopy to monitor the production of HCl. The rate coefficient, k1, was measured to be (7.5 ± 0.8) × 10−11 cm3 molecule−1 s−1 at 298 K. HCl (v = 0) and HCl (v = 1) were measured directly in this study and the yields of HCl (v = 0, 1, >1) for the reaction of Cl with CH3CHO were determined to be 0.44 ± 0.15, 0.56 ± 0.15, and <0.04, respectively. The rate coefficient for the quenching of HCl (v = 1) by CH3CHO was k17e = (4.8 ± 1.2) × 10−11 cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 766–775, 1999  相似文献   

20.
An exhaustive state-to-state dynamics study was performed to analyze the F + CHD3 --> FD(nu', j') + CHD2(nu) gas-phase abstraction reaction. Quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed at different collision energies on an analytical potential energy surface (PES-2006) recently developed by our group. Whereas the CHD2 coproduct appears vibrationally and rotationally cold, most of the available energy appears as FD(nu') product vibrational energy, peaking at nu' = 2 and nu' = 3, with the population in the latter level growing as the energy increases. The excitation function rises from the threshold of the reaction and then levels off at higher energies, with the maximum contribution from the FD(nu' = 3) level. The state-specific FD(nu') scattering distributions correlated with the coproduct CHD2 in the nu4 = 2 and nu3 = 1 states, at different collision energies, show a steady change from backward to forward scattering as the energy increases. This similar behavior for the two coproduct vibrational states, nu4 = 2 and nu3 = 1, agrees qualitatively with the experimental measurements. Comparison with theoretical and experimental results for the isotopic analogues, F + CH4 and F + CD4, shows that the title reaction presents a direct mechanism, similar to the perdeuterated reaction, but contrasts with that of the F + CH4 reaction. These results for the dynamics of different isotopic variants, always in qualitative and sometimes in quantitative agreement with experiment, show the capacity of the PES-2006 surface to correctly describe the title reaction, even though there are differences that could be due to deficiencies of the PES but also to the known limitations of the classical treatment in the QCT method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号