首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectra of the water clusters have been measured in the N2 + O2 matrix. The aggregation process of water in the matrix has been monitored by annealing the deposited samples up to 40 K and UV irradiation. The monomer, dimer, cyclic trimer and cyclic pentamer are found as water clusters in the matrix. For the hexamer, several structures such as chair, cage, prism, bag 1 and/or book 1 are likely to exist. By UV irradiation, the cyclic pentamer is predominantly formed from the monomer and dimer. On the other hand, by annealing the deposited sample, several hexamers are formed. The theoretical calculation for water clusters has revealed that the formation of one hydrogen bonding in a hydrogen-bonded chain cooperatively enhances or diminishes the strength of another hydrogen bond. Both proton donor (D) and acceptor (A) participating in a hydrogen-bonding pair DA are capable of forming hydrogen bonding with the other water molecules; D can additionally accept two protons and donate one proton, and A can additionally donate two protons and accept one proton. We have proposed the classification of hydrogen-bonding patterns considering the cooperativity, denoting as d'a'DAd'a', where d and a are integers indicating the number of proton donors and acceptors to D (the single prime) and A (the double prime), respectively. Then, a magnitude given by MOH = -d' + a' + d' - a' has been introduced, which is very useful for connecting the hydrogen-bonding patterns to their OH wavenumbers. As a result, it is revealed that the OH stretching bands of water clusters are characterized by eight indicators (free and MOH = -2, -1, 0, 1, 2, 3 and 4). The classification proposed here is applicable to the OH band analysis for the hydrogen-bonded water and alcohols in a condensed phase.  相似文献   

2.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

3.
The complex formed between methanol and tetrafluoromethane has been identified in argon and neon matrixes by help of FTIR spectroscopy. Three fundamentals (nu(OH), nu(FCF), and nu(CO)) were observed for the complex isolated in the two matrixes, and the OH stretch was red shifted in a neon matrix and blue shifted in an argon matrix with respect to the corresponding vibration of the methanol monomer. The theoretical studies of the structure and spectral characteristics of the complexes formed between CH(3)OH and CF(4) were carried out at the MP2 level of theory with the 6-311+G(2df,2pd) basis set. The calculations resulted in three stationary points from which two (I-1, I-2) corresponded to structures involving the O-H...F hydrogen bond and the third one (I-3) to the non-hydrogen-bonded structure. The topological analysis of the distribution of the charge density (AIM theory) confirmed the existence of the hydrogen bond in I-1, I-2 complexes and indicated weak interaction between the oxygen atom of CH(3)OH and three fluorine atoms of CF(4) in the I-3 complex. The comparison of the experimental and theoretical data suggests that in the matrixes only the non-hydrogen-bonded complex I-3 is trapped. The blue/red shift of the complex OH stretching vibration with respect to the corresponding vibration of CH(3)OH in argon/neon matrixes is explained by the different sensitivity of the complex and monomer vibrations to matrix material. The ab initio calculations performed for the ternary CH(3)OH-CF(4)-Ar systems indicated a negligible effect of an argon atom on the binary complex frequencies.  相似文献   

4.
We have synthesized zinc complexes of H2ENTPP (5-(8-ethoxycarbonyl-1-naphthyl)-10,15,20-triphenyl porphyrin) as a model to study hydrogen-bonding interactions. When water or methanol is a ligand, crystals of [Zn(ENTPP)(CH3OH)] or [Zn(ENTPP)(H2O)]?·?C6H5CH3 were obtained. In both structures, the ligand has hydrogen-bonding interactions, but in different patterns. In [Zn(ENTPP)(CH3OH)], the methanol oxygen and carboxylate oxygen in the naphthyl group form an intermolecular hydrogen bond. In [Zn(ENTPP)(H2O)]?·?C6H5CH3, there are two independent molecules A and B. In molecule B, there is an intramolecular hydrogen bond between the water oxygen and the carboxylate oxygen, while in molecule A, besides the intramolecular hydrogen bond, there is an intermolecular hydrogen bond between the water oxygen and the carboxylate oxygen. 1H NMR spectra suggest the binding of methanol or water to zinc are equilibrium processes in solution. Equilibrium constant has been determined by UV-Vis measurements, and it suggests the binding affinity of zinc to methanol has been moderately increased.  相似文献   

5.
Infrared spectra of the NH stretching vibrations of (NH3)n clusters (n = 2-4) have been obtained using the helium droplet isolation technique and first principles electronic structure anharmonic calculations. The measured spectra exhibit well-resolved bands, which have been assigned to the nu1, nu3, and 2nu4 modes of the ammonia fragments in the clusters. The formation of a hydrogen bond in ammonia dimers leads to an increase of the infrared intensity by about a factor of 4. In the larger clusters the infrared intensity per hydrogen bond is close to that found in dimers and approaches the value in the NH3 crystal. The intensity of the 2nu4 overtone band in the trimer and tetramer increases by a factor of 10 relative to that in the monomer and dimer, and is comparable to the intensity of the nu1 and nu3 fundamental bands in larger clusters. This indicates the onset of the strong anharmonic coupling of the 2nu4 and nu1 modes in larger clusters. The experimental assignments are compared to the ones obtained from first principles electronic structure anharmonic calculations for the dimer and trimer clusters. The anharmonic calculations were performed at the M?ller-Plesset (MP2) level of electronic structure theory and were based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structures. In general, there is excellent (<20 cm(-1)) agreement between the experimentally measured band origins for the N-H stretching frequencies and the calculated anharmonic vibrational frequencies. However, the calculations were found to overestimate the infrared intensities in clusters by about a factor of 4.  相似文献   

6.
Neighbouring groups can be strategically located to polarise HO.OH intramolecular hydrogen bonds in an intended direction. A group with a unique hydrogen-bond donor or acceptor character, located at hydrogen-bonding distance to a particular OH group, has been used to initiate the hydrogen-bond network and to polarise a HO.OH hydrogen bond in a predicted direction. This enhanced the donor character of a particular OH group and made it a cooperative hydrogen-bond centre. We have proved that a five-membered-ring intramolecular hydrogen bond established between an amide NH group and a hydroxy group (1,2-e,a), which is additionally located in a 1,3-cis-diaxial relationship to a second hydroxy group, can be used to select a unique direction on the six-membered-ring intramolecular hydrogen bond between the two axial OH groups, so that one of them behaves as an efficient cooperative donor. Talose derivative 3 was designed and synthesised to prove this hydrogen-bonding network by NMR spectroscopy, and the mannopyranoside derivatives 1 and 2 were used as models to demonstrate the presence in solution of the 1,2-(e,a)/five-membered-ring intramolecular hydrogen bond. Once a well-defined hydrogen-bond is formed between the OH and the amido groups of a pyranose ring, these hydrogen-bonding groups no longer act as independent hydrogen-bonding centres, but as hydrogen-bonding arrays. This introduces a new perspective on the properties of carbohydrate OH groups and it is important for the de novo design of molecular recognition processes, at least in nonpolar media. Carbohydrates 1-3 have shown to be efficient phosphate binders in nonpolar solvents owing to the presence of cooperative hydroxy centres in the molecule.  相似文献   

7.
DFT和热力学研究氢键协同效应及对关联1H NMR的影响   总被引:1,自引:0,他引:1  
蓝蓉  李浩然  韩世钧 《化学学报》2005,63(14):1288-1292,i002
用DFT方法在B3LYP/6—311 G(d,p)水平下研究了甲醇线性和环状分子簇.对于不同大小的分子簇之间定义了协同因子,计算得到的协同因子可以验证氢键的强协同效应,环状分子簇之间的协同效应远远大于线性分子簇,做为理论验证和比较,热力学模型分别采用含氢键缔合的格子流体状态方程(LFHB),以及含氢键协同效应的LFHB,关联醇一惰性体系的^1H核磁共振化学位移.考虑协同效应的关联结果优于原始的LFHB,比较量子化学计算的和热力学模型中采用的协同因子,认为甲醇和乙醇在溶液中更可能大部分以线性缔合形式存在。  相似文献   

8.
蓝蓉  李浩然  韩世钧 《化学学报》2005,63(14):1288-1292
用DFT方法在B3LYP/6-311++G (d,p)水平下研究了甲醇线性和环状分子簇. 对于不同大小的分子簇之间定义了协同因子. 计算得到的协同因子可以验证氢键的强协同效应, 环状分子簇之间的协同效应远远大于线性分子簇. 做为理论验证和比较, 热力学模型分别采用含氢键缔合的格子流体状态方程(LFHB), 以及含氢键协同效应的LFHB, 关联醇-惰性体系的1H核磁共振化学位移. 考虑协同效应的关联结果优于原始的LFHB. 比较量子化学计算的和热力学模型中采用的协同因子, 认为甲醇和乙醇在溶液中更可能大部分以线性缔合形式存在.  相似文献   

9.
Structure, stability, and hydrogen-bonding interaction in phenol, water, and phenol-water clusters have been investigated using ab initio and density functional theoretical (DFT) methods and using various topological features of electron density. Calculated interaction energies at MP2/6-31G level for clusters with similar hydrogen-bonding pattern reveal that intermolecular interaction in phenol clusters is slightly stronger than in water clusters. However, fusion of phenol and water clusters leads to stability that is akin to that of H(2)O clusters. The presence of hydrogen bond critical points (HBCP) and the values of rho(r(c)) and nabla(2)rho(r(c)) at the HBCPs provide an insight into the nature of closed shell interaction in hydrogen-bonded clusters. It is shown that the calculated values of total rho(r(c)) and nabla(2)rho(r(c)) of all the clusters vary linearly with the interaction energy.  相似文献   

10.
The effect of internal and applied external electric fields on the vibrational stretching frequency for bound CO (nu(CO)) in myoglobin mutants was studied using density functional theory. Geometry optimization and frequency calculations were carried out for an imidazole-iron-porphine-carbonmonoxy adduct with various small molecule hydrogen-bonding groups. Over 70 vibrational frequency calculations of different model geometries and hydrogen-bonding groups were compared to derive overall trends in the C-O stretching frequency (nu(CO)) in terms of the C-O bond length and Mulliken charge. Simple linear functions were derived to predict the Stark tuning rate using an approach analogous to the vibronic theory of activation.(1) Potential energy calculations show that the strongest interaction occurs for C-H or N-H hydrogen bonding nearly perpendicular to the Fe-C-O bond axis. The calculated frequencies are compared to the structural data available from 18 myoglobin crystal structures, supporting the hypothesis that the vast majority of hydrogen-bonding interactions with CO occur from the side, rather than the end, of the bound CO ligand. The nu(CO) frequency shifts agree well with experimental frequency shifts for multiple bands, known as A states, and site-directed mutations in the distal pocket of myoglobin. The model calculations quantitatively explain electrostatic effects in terms of specific hydrogen-bonding interactions with bound CO in heme proteins.  相似文献   

11.
Detailed observations have been conducted on the interfacial deformation of a silicone oil surface and a water drop falling on it. Eleven kinds of silicone oils with wide variations of kinematic viscosity, nu(T)=1-10(5) mm(2)/s, have been tested. The oil surface is disturbed by a water drop with a diameter d(L)=3.1 mm, which falls freely on it from a height of 100-1000 mm. Special attention has been directed to the maximum depth of the cavity formed on the oil surface D(M) and to the maximum diameter of the water drop spreading on the oil surface d(M). We have categorized the configurations of the oil cavity into seven patterns, and those of the water drop at the oil-water interface into five patterns. The maximum cavity depth D(M)/d(L) can be well correlated by a dimensionless group Re(TL)We(TL), where Re(TL) is Reynolds number based on d(L) and nu(T) and We(TL) is Weber number with the water density and surface tension of oil. The maximum diameter of the impacting water drop d(M)/d(L) can be correlated by the Reynolds number with a viscosity of water (Re(L)) and the Ohnesorge number (Oh). Moreover, the condition under which the impacting water drop is smashed into pieces has been also examined based on Re(L) and Oh.  相似文献   

12.
We have investigated the polarized IR spectra of the hydrogen bond system in crystals of trans-styrylacetic acid C(6)H(5)CHCHCH(2)COOH, and also in crystals of the following three deuterium isotopomers of the compound: C(6)H(5)CHCHCH(2)COOD, C(6)H(5)CHCHCD(2)COOH and C(6)H(5)CHCHCD(2)COOD. The spectra were measured at room temperature and at 77K by a transmission method. The spectral studies were preceded by determination of the X-ray crystal structure. Theoretical analysis of the results concerned linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond, at the frequency ranges of the nu(OH) and the nu(OD) bands, respectively. Basic spectral properties of the crystals can be interpreted satisfactorily in terms of the "strong-coupling" theory, when based on a hydrogen bond dimer model. This model sufficiently explained not only a two-branch structure of the nu(OH) and the nu(OD) bands, and temperature-induced evolution of the crystalline spectra, but also the linear dichroic effects observed in the band frequency ranges. A vibronic mechanism was analyzed, responsible for promotion of the symmetry-forbidden transition in the IR for the totally symmetric proton stretching vibrations in centrosymmetric hydrogen bond dimers. It was found to be of minor importance, when compared with analogous spectral properties of arylcarboxylic acid, or of cinnamic acid crystals. These effects were ascribed to a substantial weakening of electronic couplings between the hydrogen bonds of the associated carboxyl groups and the styryl radicals, associated with the separation of these groups in styrylacetic acid molecules by methylene groups in the molecules.  相似文献   

13.
We use laser photoacoustic spectroscopy to obtain overtone spectra at three through six quanta of O-H stretch excitation (3nu(OH)-6nu(OH)) for methyl hydroperoxide (MeOOH). Extending the spectral regions beyond our previous work reveals new features that can be attributed to transitions involving torsion about the O-O bond. Experimental spectral profiles (3nu(OH)-6nu(OH)) and cross sections (3nu(OH)-5nu(OH)) at room temperature show a good agreement with the simulated spectra that we obtain from ab initio calculations employing a vibration-torsion model at 298 K. A Birge-Sponer analysis yields experimental values for the O-H stretch frequency (omega=3773+/-15 cm(-1)) and anharmonicity (omegax=94+/-3 cm(-1)). We also detect OH radicals by laser-induced fluorescence and present photodissociation action spectra of MeOOH in the regions of 4nu(OH) and 5nu(OH). While the spectral profile at 5nu(OH) mimics the photoacoustic spectrum, the peak intensity for transitions to torsionally excited states is relatively more intense in the action spectrum at 4nu(OH), reflecting the fact that the 4nu(OH) excitation energy is below the literature dissociation energy (D0=42.6+/-1 kcal mol(-1)) so that features in the action spectrum come from thermally populated excited states. Finally, we use our calculations to assign contributions to individual peaks in the room-temperature spectra and relate our findings to a recent dynamics study in the literature.  相似文献   

14.
The microsolvation of the CH(3)OH(2) hypervalent radical in methanol clusters has been investigated by density functional theory. It is shown that the CH(3)OH(2) radical spontaneously decomposes within methanol clusters into protonated methanol and a localized solvated electron cloud. The geometric and electronic structures of these clusters as well as their vibrational frequencies have been characterized. Resonance Raman intensities, associated with the s --> p transition of the unpaired electron, have been estimated for CH(3)OH(2)M(n) (M = CH(3)OH, n = 1-3) clusters. It is shown that with increasing cluster size the simulated spectra converge toward the resonance Raman spectrum of the solvated electron in methanol measured recently by Tauber and Mathies (J. Am. Chem. Soc. 2004, 126, 3414). The results suggest that CH(3)OH(2)M(n) clusters are useful finite-size model systems for the computational investigation of the spectroscopic properties of the solvated electron in liquid methanol.  相似文献   

15.
Cobalt and zinc salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C(6)H(2)(COO)(4)H(4)], have been synthesized and investigate by polarized Raman spectroscopy. These compounds present short intramolecular hydrogen bonds (SHB) between adjacent carboxyl groups. Raman spectra indicate the presence of this interaction in both salts. Three specific vibrational of SHB modes have been investigated: O-H-O symmetric [nu(sym)(OHO)] and asymmetric [nu(asym)(OHO)] stretching modes and O-H stretching mode [nu(O-H)], which they were observed around 300, 850 and 2500 cm(-1), respectively. In crystallographic point of view, the cobalt salt presents a symmetric SHB while the zinc salt presents an asymmetric SHB. In cobalt salt all three vibrational modes of O-H-O groups in polarized Raman spectra occur in A(g) orientation although in zinc salts two of them are observed in A(g) orientation and one in B(g). Spectra analysis indicate that nu(sym)(OHO) mode is observed as A(g) to cobalt salt and B(g) to zinc salt. This mode occurs in a crowded spectral region and its identification was made by deconvolution techniques. Comparing spectra of the two salts, it is observed a small difference in relative intensity and wavenumber shift of nu(sym)(OHO) (deviance of 43 cm(-1)) and nu(OH) (deviance of 21 cm(-1)) modes due probably to differences in O...O distance between salts and in orientation of pyromellitate anion in unit cell. The nu(asym)(OHO) mode does not present significant wavenumber shift due difference in SHB. The nu(OH) band presents a great potential for hydrogen bond studies due to the fact that in its vibrational region (around 2500 cm(-1)) it is not observed other vibrational modes of these compounds.  相似文献   

16.
17.
The optical absorption and IR spectra of 1,4-dimethylamino anthraquinone (1,4-DMAAQ) in CH(2)Cl(2)/C(2)H(5)OH mixtures have been investigated. The preferential solvation of 1,4-DMAAQ in CH(2)Cl(2)/C(2)H(5)OH mixed solvents has been studied by monitoring the charge transfer band of 1,4-DMAAQ. The optical absorption spectral study indicates that 1,4-DMAAQ is preferentially solvated by CH(2)Cl(2) in CH(2)Cl(2)/C(2)H(5)OH mixtures. This can be confirmed by the observed index of preferential solvation value (delta(s1)) as well as higher mole fraction of CH(2)Cl(2) in the solvation microsphere (x(1)(L)) than in the bulk solvent (x(1)). The CH(2)Cl(2) molecules become more available to enter the solvation shell of 1,4-DMAAQ because of the hydrogen bonded clusters formed by ethanol molecules. This is also evident from the non-linear behavior of the transition energy (E(12)) as well as the absence of synergistic behavior. IR spectral studies show that the observed shifts in the nu(CO) and nu(NH) of 1,4-DMAAQ are due to the dipole-dipole interaction between the 1,4-DMAAQ and the associated ethanol.  相似文献   

18.
Solution 1H NMR has been used to investigate the axial bonding of the proximal His and the hydrogen-bonding of the distal His to the bound ligand in the isolated chains as well as the subunits of intact, tetrameric, cyanomet human hemoglobin A. The complete proximal His, including all ring protons necessary to monitor bonding in each subunit, could be definitively assigned by 1D/2D methods despite the large size (approximately 65 kDa) and severe relaxation (to T(1) approximately 3 ms, line width approximately 1.5 kHz) of two of the protons. The complete distal His E7 ring was assigned in the alpha-chain and alpha-subunit of HbA, and the dipolar shifts and relaxation were analyzed to reveal a disposition intermediate between the positions adopted in HbCO and HbO2 that is optimal for forming a hydrogen bond with bound cyanide. The lability of the alpha-subunit His E7 NepsilonH is found to be similar to that in sperm whale cyanomet myoglobin. The orientation of the distal His E7 in the beta-subunit is found to be consistent with that seen in either HbCO or HbO2. While the His E7 labile NepsilonH proton signal could not be detected in either the beta-chain or subunit, it is concluded that this more likely reflects increased lability over that of the alpha-subunit, and not the absence of a hydrogen bond to the bound ligand. Analysis of the heme mean methyl hyperfine shift, which has been shown to be very sensitive to the presence of distal hydrogen bonds to bound cyanide (Nguyen, B. D.; Xia, Z.; Cutruzzolá, F.; Travaglini Allocatelli, C.; Brancaccio, A.; Brunori, M.; La Mar, G. N. J. Biol. Chem. 2000, 275, 742-751), directly supports the presence of a distal His E7 hydrogen bond to cyanide in the beta-chain and beta-subunit which is weaker than the same hydrogen bond in the alpha-subunit. The potential for the proximal His hyperfine shifts in serving as indicators of axial strain in the allosteric transition of HbA is discussed.  相似文献   

19.
Ammonia clusters (NH3)n (n=2-10(4)) have been assembled inside helium droplets and studied via infrared laser spectroscopy. The studied spectral range of 3100-3500 cm(-1) covers the nu1 and nu3 fundamental stretching bands as well as the 2nu4 overtone of the bend of ammonia molecules. The results show strong coupling of the 2nu4 overtone with the fundamental vibrations for all cluster sizes except dimers. The intensity of the nu3 band relative to the total intensity in the spectrum increases from about 30% to about 80% upon increase of the average cluster size from n=5 to n=10(4). We attributed this effect to the concomitant decrease in the fraction of the surface molecules. The results indicate that ammonia clusters obtained in He droplets have a compact structure and that inner molecules in the clusters have similar hydrogen-bonded coordination as in the crystalline form of ammonia. This surprising result is ascribed to a directionality of the hydrogen bond, which guides the low temperature growth of the cluster in He droplets.  相似文献   

20.
An excitation of the OH-stretch nu(OH) of water has unique disruptive effects on the local hydrogen bonding. The disruption is not an immediate vibrational predissociation, which is frequently the case with hydrogen-bonded clusters, but instead is a delayed disruption caused by a burst of energy from a vibrationally excited water molecule. The disruptive effects are the result of a fragile hydrogen-bonding network subjected to a large amount of vibrational energy released in a short time by the relaxation of nu(OH) stretching and delta(H2O) bending excitations. The energy of a single nu(OH) vibration distributed over one, two, or three (classical) water molecules would be enough to raise the local temperature to 1100, 700, or 570 K, respectively. Our understanding of the properties of the metastable water state having this excess energy in nearby hydrogen bonds, termed H2O*, has emerged as a result of experiments where a femtosecond IR pulse is used to pump nu(OH), which is probed by either Raman or IR spectroscopy. These experiments show that the H2O* spectrum is blue-shifted and narrowed, and the spectrum looks very much like supercritical water at approximately 600 K, which is consistent with the temperature estimates above. The H2O* is created within approximately 400 fs after nu(OH) excitation, and it relaxes with an 0.8 ps lifetime by re-formation of the disrupted hydrogen-bond network. Vibrationally excited H2O* with one quantum of excitation in the stretching mode has the same 0.8 ps lifetime, suggesting it also relaxes by hydrogen-bond re-formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号