首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-purity germanium (HPGe) and lithium drifted germanium (Ge(Li)) detectors have been the detector of choice for high resolution gamma-ray spectroscopy for many years. This is primarily due to the superior energy resolution that germanium detectors present over other gamma-ray detectors. In order to perform quantitative analyses with germanium detectors, such as activity determination or nuclide identification, one must know the absolute full-energy peak efficiency at the desired gamma-ray energy. Many different methods and computer codes have been developed throughout history in an effort to predict these efficiencies using minimal or no experimental observations. A review of these methods and the computer codes that utilize them is presented.  相似文献   

2.
Two coaxial and a low-energy HPGe detector were characterized with Monte Carlo simulations, using the geant4 toolkit. The geometry of the detectors, including the dimensions of the crystal and the internal structural parts, were initially taken from the factory specifications and from X-ray radiographies, and were later fine-tuned. The detector response functions, with special emphasis on the absolute full-energy peak efficiencies and peak-to-total ratios, were calculated and compared to experimental data taken at different measurement geometries. Between 150 keV and 11 MeV an agreement within 1–2 standard deviation has been achieved, whereas systematic deviations were experienced at lower energies.  相似文献   

3.
Total and full-energy peak efficiencies, coincidence correction factors and the source self-absorption of a p-type coaxial HPGe detector for cylindrical sources have been calculated using direct analytical expressions. In the experiments gamma aqueous sources containing several radionuclides covering the energy range from 60 to 1836 keV were used. By comparison, the theoretical and experimental full-energy peak efficiency values are in good agreement.  相似文献   

4.
The Environmental Radionuclide Sensor System (ERSS)3 is an extremely sensitive sensor, which has been cooperatively developed by Pacific Northwest National Laboratory (PNNL) and Special Technologies Laboratory (STL) for environmental surveys of radionuclides. The ERSS sensors fit in an airborne pod and include twenty High-Purity Germanium (HPGe) detectors for the high-resolution measurement of gamma-ray emitting radionuclides, twenty-four3He detectors for possible neutron measurements, and two video cameras for visual correlation. These acrial HPGe sensors provide much better gamma-ray energy resolution than can be obtained with NaI(TI) detectors. The associated electronics fit into three racks. The system can be powered by the 28 V DC electrical supply of typical aircraft or 120 V AC. The data acquisition hardware is controlled by customized software and a real-time display is provided. Each gamma-ray event is time stamped and stored for later analysis. This paper will present the physical design, discuss the software used to control the system, and provide some examples of its use.  相似文献   

5.
A Compton suppression system is used to reduce the contribution of scattered gamma-rays that originate within the HPGe detector to the gamma-ray spectrum. The HPGe detector is surrounded by an assembly of guard detectors, usually NaI(T1). The HPGe and NaI(T1) detectors are operated in anti-coincidence mode. The NaI(T1) guard detector detects the photons that Compton scatter within, and subsequently escape from the HPGe detector. Since these photons are correlated with the partial energy deposition within the detector, much of the resulting Compton continuum can be subtracted from the spectrum reducing the unwanted background in gamma-ray spectra. A commercially available Compton suppression spectrometer (CSS) was purchased from Canberra Industries and tested at the Radiation Science and Engineering Center at Penn State University. The PSU-CSS includes a reverse bias HPGe detector, four annulus NaI(T1) detectors, a NaI(T1) plug detector, detector shields, data acquisition electronics, and a data processing computer. The HPGe detector is n-type with 54% relative efficiency. The guard detectors form an annulus with 9-inch diameter and 9-inch height, and have a plug detector that goes into/out of the annulus with the help of a special lift apparatus to raise/lower. The detector assembly is placed in a shielding cave. State-of-the-art electronics and software are used. The system was tested using standard sources, neutron activated NIST SRM sample and Dendrochronologically Dated Tree Ring samples. The PSU-CSS dramatically improved the peak-to-Compton ratio, up to 1000:1 for the 137Cs source.  相似文献   

6.
Monte Carlo simulations can be a powerful tool in calibrating high-resolution gamma-ray spectrometry based on high pure germanium (HPGe) detectors. The purpose of this work is to examine the applicability of Monte Carlo simulations for the computation of the efficiency transfer in various measurement geometries on the basis of the detected efficiency for point source geometry. For this, GEANT4 code was applied for the computation of the detection efficiency for incident gamma energy of radionuclide placed at different distances from HPGe detector from 50 to 2,000 keV in addition for volume sources of different compositions and densities. The experimental efficiency curves were compared with the prediction of the GEANT4 code. Efficiency is computed at discrete values of point and volume sources in different distances to derive new efficiencies values for other distances.  相似文献   

7.
Summary In order to estimate by calculation the magnitude of the true coincidence summing losses that may be affecting the observed gamma-ray spectrum of a given nuclide, measured using a spectrometer, knowledge of the total detection efficiencies at the gamma-ray energies within the cascades is essential. The total efficiency can be determined from the full energy peak efficiency, provided the peak-to-total ratio is known. For a given high purity germanium (HPGe) detector, one can establish an intrinsic peak-to-total (P/T) efficiency curve using a set of measurements performed with “single” (ideally monoenergetic) gamma-emitting nuclides (e.g., 241Am, 109Cd, 57Co, 113Sn, 137Cs, 65Zn). Some of these nuclides are short lived and so have to be replaced periodically. Moreover, the presence of low energy gamma-rays and X-rays in most of the decay schemes complicate the empirical determination of the P/T ratios. This problem is especially severe if measurements are made using HPGe detectors that have a very thin dead layer. The problems posed by low energy gamma-rays and X-rays can be avoided by using absorbers, but then one has to be careful not to perturb the intrinsic value of the P/T ratio being sought. This paper addresses these problems. Measurement related limitations are avoided if one can use a computational technique instead. In the work presented here, the feasibility of using a Monte-Carlo based technique to determine the P/T ratios at a wide range of energies (60 keV to 2000 keV) is explored. The Monte-Carlo code MCNP (version 4B) is used to simulate gamma-ray spectra from various nuclides. Measured P/T ratios are compared to calculated ratios for several HPGe detectors to demonstrate the generality of the approach. Reasons for observed disagreement between the two are discussed.  相似文献   

8.
A 740 GBq 241Am-Be neutron source based prompt gamma-ray activation analysis (PGAA) setup in combination with a typical coaxial n-type HPGe detector (REGe) system was used to analyze light elements like H, B, C, N, etc. The absolute full energy peak (FEP) efficiencies of the shielded REGe detector for irradiation and counting geometries and for sources with different sizes (point, ampoule and cylindrical) were measured in the 0.1–2.5 MeV energy range by utilizing calibrated sources (point, liquid and solid). 4th order polynomials were fitted to the experimental data. Efficiencies in far irradiation and counting geometries are compared.  相似文献   

9.
Summary Despite the on-going development of room temperature semiconductors for use as gamma-ray detectors, the only material which can provide a solution to the combined requirements of stability, high-energy resolution and high-detection efficiency (at useful energies) is still germanium (HPGe). These properties of HPGe gamma-ray detectors make them invaluable in meeting the demands of the newly emergent and increasingly important applications relating to homeland security and the interdiction of smuggled nuclear material. However, HPGe detectors require cooling to cryogenic temperatures (<120 K) to operate as gamma-ray detectors. Traditionally, this cooling has been accomplished with liquid nitrogen (LN2). The use of LN2 as a coolant is, at best, inconvenient. Maintenance, operating cost, availability at remote locations, and the hazardous nature of the material all combine to limit the practicality of a LN2-cooled device, no matter how desirable it might be from other standpoints. Mechanical methods of achieving cryogenic temperatures have existed for many years. The first mechanically-cooled HPGe systems appeared commercially in the early 1980s.1 These systems had high cost, high power requirements, degraded system performance, were bulky in size, and unreliable. Other developments have produced prototype versions of portable (or transportable) mechanically-cooled HPGe systems. More recent advances in mechanical cooling technologies have the potential to make HPGe detectors easily adaptable to a wide variety of applications including battery-operated, truly man-portable systems for use in inspection, unattended monitoring, and Homeland Security. The major problems of mechanical coolers are degraded performance due to vibration and power consumption. The systems described here have reduced both of these to useable limits. The vibration or microphonic noise created in real-world systems is significantly reduced by optimizing the digital filter technology in the signal processing electronics associated with such detectors. Data presented here show reliability and performance results of the mechanically-cooled systems. These results show the improvements gained through the use of the optimally-matched digital filters.  相似文献   

10.
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial-off-the-shelf (COTS) software which utilizes a standard peak search algorithm.  相似文献   

11.
Low-level gamma-ray spectrometry with large volume HPGe detectors has been widely used in analysis of environmental radionuclides. The reasons are excellent energy resolution and high efficiency that permits selective and non-destructive analyses of several radionuclides in composite samples. Although the most effective way of increasing the sensitivity of a gamma-ray spectrometer is to increase counting efficiency and the amount of the sample, very often the only possible way is to decrease the detector’s background. The typical background components of a low-level HPGe detector, not situated deep underground, are cosmic radiation (cosmic muons, neutrons and activation products), radioactivity of construction materials, radon and its progenies. A review of Monte Carlo simulations of background components of HPGe detectors, and their characteristics in coincidence and anti-Compton mode of operation are presented and discussed.  相似文献   

12.
High purity germanium (HPGe) gamma-ray detectors are used for nondestructive assay. Liquid nitrogen (LN2), a cryogen, is commonly used to cool these detectors. Cryogen use is associated with several health risks and operational problems. This has prompted the development of cryogen-free refrigeration. A new generation of commercial pulse tube refrigerator (PTR) has been developed during the last decade. A unique feature of the PTR is the absence of cold moving parts. This significantly reduces the generated noise and vibration. In the following report, LN2, a modified Joule–Thompson cooler, and a PTR unit are examined and their cooling effectiveness with HPGe gamma-ray detectors compared. Overall, PTR is an engineering equivalent to LN2 and modified Joule–Thompson cooler systems used in gamma spectroscopy and eliminate the health and physical hazards associated with LN2 systems without adding hazards.  相似文献   

13.
Summary In one of our recent papers, the applicability of linear parameter functions for fitting the full-energy peak efficiency of n-type Ge gamma-ray detectors has been examined over a wide energy range of 50-8500 keV. In that paper we compared six different analytical functions and showed that higher-order polynomial functions on a log-log scale gave the best performance. However, there is a drawback to using the log-log scale when an additive function of efficiency at different energies or of the inverse efficiency has to be used in a fitting procedure. In the present study, the applicability of higher-order polynomial and spline functions to linear and inverse efficiency, but logarithmic energy scales, is examined.  相似文献   

14.
The absolute total and full-energy peak (FEP) efficiencies of a high purity germanium (HPGe) photon detector are measured in the energy range from 40 keV to 1500 keV. The functional parameters are fitted to the calibration points from 14 long-lived standard sources (129I,241Am,109Cd,57Co,139Ce,137Cs,54Mn,65Zn,60Co,22Na,133Ba,152Eu,154Eu and166mHo) within an accuracy better than the quoted uncertainty of the calibration sources. The efficiencies in far and close geometries are compared.  相似文献   

15.
16.
In an HPGe spectroscopy system, Digital Signal Processing (DSP) replaces the shaping amplifier, correction circuits, and ADC with a single digital system that processes the sampled waveform from the preamplifier with a variety of mathematical algorithms. DSP techniques have been used in the field of HPGe detector gamma-ray spectrometry for some time for improved stability and performance over their analog counterparts. Recent developments in HPGe detector construction and new liquid nitrogen-free cooling methods have resulted in HPGe detectors which are better adapted to the needs of the application. Some of these improvements in utility have degraded the spectroscopy performance. With DSP, it is possible to reduce the changes, in real time, in several aspects of detector performance on a pulse-by-pulse basis, which is not possible in the old analog environment. In the past, in designing for the analog regime, flexibility was limited by issues of component size, number and cost. In the digital domain, the problem translates to the need for a DSP with enough speed and an efficient algorithm to achieve the desired transformation or correction to the digitally determined pulse shape or height, event-by-event. The use of DSP allows the peak processing to be tuned to the preamplifier peak shape from the detector rather than being set to an average value determined from several detectors of the type in question. The selection of the filter can be automatic or manual. The following corrections are now possible: ballistic deficit correction, peak resolution improvement by reducing the impact of microphonic noise, increase throughput by reducing pulse processing time, and loss-free (zero dead time) counting.  相似文献   

17.
GEANT4 Monte Carlo simulations have been successfully utilised to characterise a Compton suppressed broad-energy HPGe detector. The detector setup has been fully recreated in the simulation, which has been optimised to consistently reproduce the detector response. The peak efficiencies for both the primary BEGe detector and NaI(Tl) guard detectors agree with the simulated values for multiple test sources within 3 %. Compton suppression has also been simulated, with good agreement seen between the simulated and actual CSF values (<10 %) for multiple radionuclides. A secondary reference source was also simulated, which contained up to 30 radionuclides in a different geometry to that of the previous source. This showed excellent agreement with experimental data in both unsuppressed and suppressed modes of operation.  相似文献   

18.
A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porisity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions.  相似文献   

19.
Radioactivity measurement of environmental samples is frequently assayed by gamma-ray spectrometry using Marinelli beakers. In this work, self-absorption and coincidence summing effects arising in activity measurements for Marinelli beaker geometry have been studied with a Ge detector. Three types of Marinelli beakers which have capacities of 450 mL, 1 L, and 2 L were developed. Self-attenuation effects for density variation of radioactive samples in each type of the Marinelli beakers were measured as a function of gamma-ray energy, and also the results were compared with calculated values by mathematical model. Meanwhile, the coincidence summing effects of125Sb and154Eu nuclides were obtained from the determination of the full-energy peak and total efficiencies for a Ge detector.  相似文献   

20.
GESPECOR: A versatile tool in gamma-ray spectrometry   总被引:1,自引:0,他引:1  
GESPECOR is a Monte Carlo based software developed for the computation of efficiency, of matrix effects and of coincidence summing effects in gamma-ray spectrometry. GESPECOR can be applied to coaxial and well-type HPGe or to Ge(Li) detectors and to various types of sources, including point, cylindrical, and spherical sources or Marinelli beakers. In this paper the structure of GESPECOR is presented and the procedures applied are described. The uncertainty of the results computed by GESPECOR is carefully analyzed. The analysis shows that GESPECOR is able to provide results with a well defined uncertainty, in a user friendly WINDOWS environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号