首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a density functional theory (DFT) investigation of magnetically frustrated Mn monolayers deposited on the triangular lattice of the Cu(1 1 1) surface. Noncollinear magnetic structures are treated on the basis of the vector spin-density formulation of the DFT. The spin-polarized scanning tunneling microscope operated in the constant-current mode is proposed as a powerful tool to investigate these complex magnetic structures.  相似文献   

2.
The spin-polarized scanning tunneling microscope (SP-STM) operated in the constant current mode is proposed as a powerful tool to investigate complex atomic-scale magnetic structures of otherwise chemically equivalent atoms. The potential of this approach is demonstrated by successfully resolving the magnetic structure of Cr/Ag(111), which is predicted on the basis of ab initio vector spin-density calculations to be a coplanar noncollinear periodic 120 degrees Néel structure. Different operating modes of the SP-STM are discussed on the basis of the model of Tersoff and Hamann.  相似文献   

3.
Selective analysis of molecular states in scanning tunneling microscopy (STM) has so far been achieved in a few cases by tuning the bias range of the STM in high-resolution measurements. Correspondingly, perylene adsorbed in a close-packed monolayer on Ag(110) is imaged mainly through the pi states of the molecule. By contrast, functionalizing the STM tip with a perylene molecule leads to a mismatch between the energy levels of the STM tip and the molecule adsorbates and, instead, images only the metal states of the underlying silver surface. The observation opens a route for better energy selectivity in electron transport measurements through organic interfaces.  相似文献   

4.
5.
6.
7.
8.
Electron stimulated desorption of cyclopentene from the Si(100)-(2 x 1) surface is studied experimentally with cryogenic UHV STM and theoretically with transport, electronic structure, and dynamical calculations. Unexpectedly for a saturated hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption yields are a factor of 500 to 1000 lower than previously reported for unsaturated molecules on silicon. The low threshold voltage for desorption is attributed to hybridization of the molecule with the silicon surface, which results in low-lying ionic resonances within 2-3 eV of the Fermi level. These resonances are long-lived, spatially localized, and displaced in equilibrium with respect to the neutral state. This study highlights the importance of nuclear dynamics in silicon-based molecular electronics and suggests new guidelines for the control of such dynamics.  相似文献   

9.
Scanning tunneling microscopy/spectroscopy (STM/STS), which has been so epoch-making in surface science experiments introduced many challenging problems also to the theory of condensed matter physics. Recent progress in theories of STM/STS contributed to revealing the relation between the atomic structure of the tip and the STM/STS data, and to clarify various strange phenomena observed. The present article reviews various important issues of the fundamentals of STM/STS from theoretical view points.

After surveying the so far presented theoretical approaches, the first-principles simulation method based on the microscopic electronic state of both the sample surface and the tip is introduced. Several examples of the simulation such as graphite and Si surfaces, are described. Some novel phenomena of the microscopic tunnel system of STM such as the negative differential resistance in STS and single electron tunneling through fine supported particles are also discussed, as well as the many-body effect or electron-phonon coupling effect on STM/STS.  相似文献   


10.
Abstract

We sketch developments in the theory of the self-energy of charged particles moving near condensed matter surfaces. Some applications to experimental results from spectroscopy with electrons localized in microprobe beams and to electrons tunneling across a gap between two metals are considered.  相似文献   

11.
A new method for the investigation of ultrasonic waves on surfaces of solids based on scanning tunneling microscopy is presented. A sinusoidal high frequency signal is added to the tip voltage. Hence the tunneling current contains a component whose frequency is the difference of the frequencies of the acoustic wave field and the ac tip voltage. Amplitude and phase of this component carry the full information about the wave field.  相似文献   

12.
Measurement of gold surface self-diffusion by the method of surface profile decay, using a scanning tunneling microscope (STM) have been done on a polycrystalline gold film deposited on a glass substrate. The peak-to-peak surface roughness was measured as a function of annealing time after annealing at 170 °C with a special pan-cake furnace in the STM. The gold surface diffusion coefficient at 170 °C can then be extracted from these measurements.  相似文献   

13.
14.
Following the development of the scanning tunneling microscope (STM), the technique has become a very powerful and important tool for the field of surface science, since it provides direct real-space imaging of single atoms, molecules and adsorbate structures on surfaces. From a fundamental perspective, the STM has changed many basic conceptions about surfaces, and paved the way for a markedly better understanding of atomic-scale phenomena on surfaces, in particular in elucidating the importance of local bonding geometries, defects and resolving non-periodic structures and complex co-existing phases. The so-called “surface science approach”, where a complex system is reduced to its basic components and studied under well-controlled conditions, has been used successfully in combination with STM to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as heterogeneous catalysis, tribology, sensors or medical implants. In this tribute edition to Gerhard Ertl, we highlight a few examples from the STM group at the University of Aarhus, where STM studies have revealed the unique role of surface defects for the stability and dispersion of Au nanoclusters on TiO2, the nature of the catalytically active edge sites on MoS2 nanoclusters and the catalytic properties of Au/Ni or Ag/Ni surfaces. Finally, we briefly review how reaction between complex organic molecules can be used to device new methods for self-organisation of molecular surface structures joined by comparatively strong covalent bonds.  相似文献   

15.
We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy, against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite surface, a behavior which is dramatically different from contacts on normal metals.  相似文献   

16.
17.
18.
19.
The edge properties of single layer graphene epitaxially grown on partially graphitized 4H-SiC(0001) surface have been investigated with scanning tunneling microscopy (STM). We directly observed the atomic-structure dependency of the super structures in the vicinity of armchair and zigzag edges due to the different kinds of symmetry-breaking at those two edges.  相似文献   

20.
In spite of the huge potential of scanning tunneling microscopy (STM), a firm interpretation of experimental data is often difficult. Theoretical simulation of STM images andSTS spectra plays a very important role to derive detailed information from experiments. In the present article, a method of the first-principles simulation based on the local density functional approach is introduced, andapplied to some interesting surface systems. It is clarified how the atomistic structure of the tip influences the STM image. An example is presented in which a naive interpretation of the STM image fails. The exotic phenomenon of transparency of the adsorbed molecule is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号