首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2014,378(11-12):892-898
Full counting statistics is a powerful tool to characterize the noise and correlations in transport through mesoscopic systems. In this work, we propose the theory of conditional spin counting statistics, i.e., the statistical fluctuations of spin-up (down) current given the observation of the spin-down (up) current. In the context of transport through a single quantum dot, it is demonstrated that a strong Coulomb interaction leads to a conditional spin counting statistics that exhibits a substantial change in comparison to that without Coulomb repulsion. It thus can be served as an effective way to probe the Coulomb interactions in mesoscopic transport systems. In case of spin polarized transport, it is further shown that the conditional spin counting statistics offers a transparent tool to reveal the spin-resolved bunching behavior.  相似文献   

2.
We investigate the equilibrium property of a mesoscopic ring with a spin-orbit interaction. It is well known that, for a normal mesoscopic ring threaded by a magnetic flux, the electron acquires a Berry phase that induces the persistent (charge) current. Similarly, the spin of an electron acquires a spin Berry phase traversing a ring with a spin-orbit interaction. It is this spin Berry phase that induces a persistent spin current. To demonstrate its existence, we calculate the persistent spin current without an accompanying charge current in the normal region in a hybrid mesoscopic ring. We point out that this persistent spin current describes the real spin motion and can be observed experimentally.  相似文献   

3.
We investigate theoretically the spin Hall current in an inhomogeneous Rashba mesoscopic ring attached to four terminals. It is shown that a voltage drop can be tuned by adjusting the gate voltage due to the inhomogeneous Rashba effect, and provides us a tool to measure spin Hall current electrically. The spin Hall current and the ratio of the probe voltages can survive and keep their obvious relationship even in the presence of disorder. The regular relationship between the spin Hall conductance and the ratio of the probe voltages will be destroyed by the interference between different channels in multi-channel ring.  相似文献   

4.
存在自旋轨道耦合的介观小环中的持续自旋流   总被引:1,自引:0,他引:1  
孙庆丰  谢心澄  王健 《物理》2007,36(11):813-816
文章作者研究了存在自旋轨道耦合的介观小环的平衡态性质.此前人们已经知道,在有磁通穿过的介观小环中,绕环运动的电子会产生一附加的Berry相位而导致持续电流;同样地,在仅有自旋轨道耦合的体系中,电子绕环运动也应当会产生附加的自旋Berry相位,进而驱动持续自旋流.文章作者通过对一个有正常区和自旋轨道耦合区的复合小环的计算,结果表明,无电流伴随的纯持续自旋流的确存在.文章作者指出,这持续自旋流描述真实的自旋运动,并且它能被实验观测.  相似文献   

5.
We show that temporal shape modulations (pumping) of a quantum dot in the presence of spin-orbital coupling lead to a finite dc spin current. Depending on the strength of the spin-orbit coupling, the spin current is polarized perpendicular to the plane of the two-dimensional electron gas, or has an arbitrary direction subject to mesoscopic fluctuations. We analyze the statistics of the spin and charge currents in the adiabatic limit for the full crossover from weak to strong spin-orbit coupling.  相似文献   

6.
We consider the electronic transport in a mesoscopic metallic spin glass. We show that the distribution of overlaps between spin configurations can be inferred from the reduction of the conductance fluctuations by the magnetic impurities. Using this property, we propose new experimental protocols to probe spin glasses directly through their overlaps.  相似文献   

7.
He Gao  Hong-Kang Zhao 《Physics letters. A》2013,377(16-17):1210-1214
The Fano and Kondo cooperated resonant tunneling through a quantum dot interferometer under the perturbation of a rotating magnetic field is investigated theoretically. The spin-polarized current components have been derived generally by employing the Keldysh nonequilibrium Green?s function method, through which the charge and spin currents are determined directly. The numerical calculations on spin and charge currents are performed to show the compound features of mesoscopic transport associated with the Kondo, Fano, and Zeeman effects intimately. The induced spin current in the Kondo regime is much different from the one in the non-interacting regime. The spin current is tuned from resonant peak to valley by varying external parameters.  相似文献   

8.
We show that at low temperatures T an inhomogeneous radial magnetic field with magnitude B gives rise to a persistent magnetization current around a mesoscopic ferromagnetic Heisenberg ring. Under optimal conditions, this spin current can be as large as gmicro(B)(T/ variant Planck's over 2pi )exp([-2pi(gmicro(B)B/delta)(1/2)], as obtained from leading-order spin-wave theory. Here g is the gyromagnetic factor, micro(B) is the Bohr magneton, and delta is the energy gap between the ground-state and the first spin-wave excitation. The magnetization current endows the ring with an electric dipole moment.  相似文献   

9.
Spin-polarized transport through a coupled double-dot   总被引:1,自引:0,他引:1  
We investigate the quantum transport through a mesoscopic device consisting of an open, lateral double-quantum-dot coupled by time oscillating and spin-polarization dependent tunneling which results from a static magnetic field applied in the tunneling junction. In the presence of a non-vanishing bias voltage applied to two attached macroscopic leads both spin and charge currents are driven through the device. We demonstrate that the spin and charge currents are controllable by adjusting the gate voltage, the frequency of driving field and the magnitude of the magnetic field as well. An interesting resonance phenomenon is observed.  相似文献   

10.
We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector.  相似文献   

11.
It is commonly known that the hydrodynamic equations can be derived from the Boltzmann equation. In this paper,we derive similar spin-dependent balance equations based on the spinor Boltzmann equation. Besides the usual charge current, heat current, and pressure tensor, we also explore the characteristic spin accumulation and spin current as well as the spin-dependent pressure tensor and heat current in spintronics. The numerical results of these physical quantities are demonstrated using an example of spin-polarized transport through a mesoscopic ferromagnet.  相似文献   

12.
《Physics letters. A》2014,378(5-6):584-589
We investigate theoretically the persistent charge current (PCC) and pure spin current (PSC) in a hybrid mesoscopic ring with Rashba spin–orbit interaction (RSOI). The PCC and PSC surviving in the ring would experience a periodic potential formed by the band offset of the constituent materials. Similarly, an effective tunnel barrier can be introduced by a region with different RSOI strength. This provides us a convenient way to manipulate the periodic potential by changing the RSOI strength through an electric field. With the increment of the RSOI strength, the PCC is suppressed, while the PSC presents an oscillatory pattern changing from negative to positive.  相似文献   

13.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

14.
We report a theoretical study on generation of a spin polarized charge current with arbitrary spin polarization, including the fully-spin-polarized current. In a two-terminal mesoscopic ring device, the Rashba spin-orbit coupling (RSOC) is considered as well as a microwave field applied on one of arms of the ring. It is shown that at zero external bias a spin current can be produced in addition to the usual charge current pumped by the microwave field, which is attributed to the the quantum interference effect of the RSOC induced spin precession phase. By varying the system parameters such as the microwave frequency and the RSOC strength, not only the magnitude but also the direction of the spin current can be efficiently controlled, moreover, the spin-polarization degree of the charge current can readily be tuned by these system parameters in the range [-1,1]. Since all the parameters can be controlled electrically in our study, the proposed device may shed light on the possibility of an all-electrical generation and tuning of a spin-polarized current in the field of the spintronics.  相似文献   

15.
We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic four-terminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Büttiker formalism, we found that when alongitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.  相似文献   

16.
We report a theoretical study of pumped spin currents in a silicene-based pump device, where two time-dependent staggered potentials are introduced through the perpendicular electric fields and a magnetic insulator is considered in between the two pumping potentials to magnetize the Dirac electrons. It is shown that giant spin currents can be generated in the pump device because the pumping can be optimal for each transport mode, the pumping current is quantized. By controlling the relevant parameters of the device, both pure spin currents and fully spin-polarized currents can be obtained.Our results may shed a new light on the generation of pumped spin currents in Dirac-electron systems.  相似文献   

17.
We analyze transport of magnetization in insulating systems described by a spin Hamiltonian. The magnetization current through a quasi-one-dimensional magnetic wire of finite length suspended between two bulk magnets is determined by the spin conductance which remains finite in the ballistic limit due to contact resistance. For ferromagnetic systems, magnetization transport can be viewed as transmission of magnons, and the spin conductance depends on the temperature T. For antiferromagnetic isotropic spin-1/2 chains, the spin conductance is quantized in units of order (gmu(B))(2)/h at T=0. Magnetization currents produce an electric field and, hence, can be measured directly. For magnetization transport in electric fields, phenomena analogous to the Hall effect emerge.  相似文献   

18.
Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a ‘fixed frame’, and it can be viewed as an ‘analogous system’ for non-Abelian transport in the same spirit as Volovik’s identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the ‘fixed frame’ context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw’s scheme: non-Abelian hydrodynamical currents can be factored in a ‘non-coherent’ classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The “particle based hydrodynamics” of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non-conservation of the incoherent spin currents of the high temperature limit. We analyze the quantum-mechanical single particle currents of relevance to mesoscopic transport with as highlight the Ahronov-Casher effect, where we demonstrate that the intricacies of the non-Abelian transport render this effect to be much more fragile than its abelian analog, the Ahronov-Bohm effect. We subsequently focus on spin flows protected by order parameters. At present there is much interest in multiferroics where non-collinear magnetic order triggers macroscopic electric polarization via the spin-orbit coupling. We identify this to be a peculiarity of coherent non-Abelian hydrodynamics: although there is no net particle transport, the spin entanglement is transported in these magnets and the coherent spin ‘super’ current in turn translates into electric fields with the bonus that due to the requirement of single valuedness of the magnetic order parameter a true hydrodynamics is restored. Finally, ‘fixed-frame’ coherent non-Abelian transport comes to its full glory in spin-orbit coupled ‘spin superfluids’, and we demonstrate a new effect: the trapping of electrical line charge being a fixed frame, non-Abelian analog of the familiar magnetic flux trapping by normal superconductors. The only known physical examples of such spin superfluids are the 3He A- and B-phase where unfortunately the spin-orbit coupling is so weak that it appears impossible to observe these effects.  相似文献   

19.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

20.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号