首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner bark of Ceylon cinnamon (Cinnamomum zeylanicum L.) is commonly used as a spice and has also been widely employed in the treatment and prevention of disease. The positive health effects associated with the consumption of cinnamon could in part be due to its phenolic composition; proanthocyanidins (PA) are the major polyphenolic component in commercial cinnamon. We present a thorough study of the PA profile of cinnamon obtained using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. In addition to the advantages of MALDI-TOF as a sensitive technique for the analysis of high-molecular-weight compounds, the tandem arrangement allows the identification of the compounds through their fragmentation patterns from MS/MS experiments. This is the first time that this technique has been used to analyze polymeric PA. The results show that cinnamon PA are more complex than was previously thought. We show here for the first time that they contain (epi)gallocatechin and (epi)catechingallate units. As gallates (galloyl moieties) and the pyrogallol group in gallocatechins have been related to the biological activity of grape and tea polyphenols, the presence of these substructures may explain some of the properties of cinnamon extracts. MALDI-TOF/TOF reveals that cinnamon bark PA include combinations of (epi)catechin, (epi)catechingallate, (epi)gallocatechin, and (epi)afzelechin, which results in a highly heterogeneous mixture of procyanidins, prodelphinidins, and propelargonidins.  相似文献   

2.
Imaging mass spectrometry is emerging as a powerful tool that has been applied extensively for the localization of proteins, peptides, pharmaceutical compounds, metabolites, and lipids in biological tissues. In this article, a three-dimensional mass spectral imaging (3D MSI) technique was developed to examine distribution patterns of multiple neuropeptide families and lipids in the brain of the crab Cancer borealis. Different matrix/solvent combinations were compared for preferential extraction and detection of neuropeptides and lipids. Combined with morphological information, the distribution of numerous neuropeptides throughout the 3D structure of brain was determined using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Different localization patterns were observed for different neuropeptide families, and isoforms displaying unique distribution patterns that were distinct from the common family distribution trends were also detected. In addition, multiple lipids were identified and mapped from brain tissue slices. To confirm their identities, MS/MS fragmentation was performed. Different lipid species displayed distinct localization patterns, suggesting their potential different functional roles in the nervous system.  相似文献   

3.
An extensive study of actinomycins was performed using matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐TOF MS). Actinomycins represent a well‐known family of peptidolactone chromopeptides with potent cytostatic and antibiotic properties. Using five well‐characterized streptomycete strains, we introduced MALDI‐TOF MS as an efficient technique for rapid in situ detection of actinomycins in surface extracts of cells picked from agar plates. By this procedure, actinomycin complexes can be investigated with high sensitivity and accuracy in a minimum of time. These studies were complemented by mass spectrometric investigation of actinomycins obtained from culture filtrate extracts and purified by high‐performance liquid chromatography to detect yet unknown actinomycin species. By feeding experiments, C‐demethyl‐actinomycins from Streptomyces chrysomallus and Streptomyces parvulus as well as hemi‐actinomycins from Streptomyces antibioticus lacking one of the two pentapeptide lactone rings were isolated and characterized as novel variants for structure–activity relationship studies. Structural characterization of the investigated actinomycins was performed by post source decay MALDI‐TOF MS. The specific features of the fragmentation patterns of the protonated and cationized forms of selected actinomycins were investigated in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) was applied to characterize permethylated oligosaccharides. Under these ionization conditions such derivatives yield intense signals corresponding to sodium-cationized molecular species. A systematic study was conducted on a series of neutral and sialylated permethylated oligosaccharides to allow rationalization of the fragmentation processes. The major fragments observed in the MALDI-TOF/TOF-MS/MS spectra result from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine and sialic acid residues. The fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Cross-ring cleavages, which are very informative of the linkages of the monosaccharide residues constituting these oligosaccharides, and 'internal' cleavage ions which are derived from elimination of substituents from around the pyranose ring, were also observed. This extensive fragmentation was shown to be useful for the structural characterization of oligosaccharides. MALDI-TOF/TOF-MS/MS of permethylated oligosaccharides appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

5.
耐药相关果糖二磷酸醛缩酶C的生物质谱分析与鉴定   总被引:1,自引:0,他引:1  
吕磊  刘志强  李丽  刘宁  刘淑莹 《化学学报》2006,64(16):1700-1704
醛缩酶C是生命代谢过程中重要糖酵解同工酶之一. 应用二维凝胶电泳分离卵巢癌细胞中高表达的果糖二磷酸醛缩酶C, 并通过基质辅助激光解吸电离飞行时间串联质谱对其进行分析与鉴定, 结果表明应用高分辨二维凝胶电泳分离, 结合生物质谱联用技术分析和鉴定未知蛋白具有简单快捷的特点.  相似文献   

6.
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC‐(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole‐TOF‐MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MSE approach). In the low‐energy function, limited fragmentation took place, whereas for the high‐energy function, fragmentation was enhanced. For less volatile unknowns, ultra‐high pressure liquid chromatography‐quadrupole‐TOF‐MS was additionally applied. Using a home‐made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The spectra recorded by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) of complex carbohydrates from human milk are presented. Besides ions originating from glycosidic cleavages and from sugar ring fragmentations, these spectra show intense peaks that may be assigned to ions produced by three new fragmentation pathways involving a six-atom rearrangement. These ions, together with the A fragments from sugar ring fragmentations, open the possibility of obtaining a complete mapping of the linkage positions present in the carbohydrates investigated by MALDI-TOF/TOF.  相似文献   

8.
A rapid‐resolution liquid chromatography (RRLC) method coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (Q‐TOF MS/MS) has been developed for analysis of oleanane‐type triterpenoid saponins in Achyranthes bidentata. Collision‐induced dissociation techniques were used to fragment the precursor molecular ions and the resulting product ions. A retro‐Diels‐Alder rearrangement from the oleanane aglycone skeleton in the MS/MS process yielded characteristic fragment ions in positive ion mode. These characteristic ions were helpful in predicting the aglycone structure. Losses of monosaccharide sequences, presence of sugar‐chain fragment ions, and cleavage of CO2 were observed for important information on sugar types and attachment sequences. Fragmentation rules of three major groups of saponins from A. bidentata were summarized, and the possible fragmentation pathways were proposed. A total of 22 compounds including both the target and unknown oleanane‐type triterpenoid saponins were rapidly screened and predicted in the herbal extract by the developed method. The RRLC‐Q‐TOF MS/MS method has provided a powerful approach for rapid separation, target screening and structural elucidation of oleanane‐type saponins, and also opened perspectives for similar studies on other herbal medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The phenolic fraction and other polar compounds of the Hibiscus sabdariffa were separated and identified by HPLC with diode array detection coupled to electrospray TOF and IT tandem MS (DAD‐HPLC‐ESI‐TOF‐MS and IT‐MS). The H. sabdariffa aqueous extract was filtered and directly injected into the LC system. The analysis of the compounds was carried out by RP HPLC coupled to DAD and TOF‐MS in order to obtain molecular formula and exact mass. Posterior analyses with IT‐MS were performed and the fragmentation pattern and confirmation of the structures were achieved. The H. sabdariffa samples were successfully analyzed in positive and negative ionization modes with two optimized linear gradients. In positive mode, the two most representative anthocyanins and other compounds were identified whereas the phenolic fraction, hydroxycitric acid and its lactone were identified using the negative ionization mode.  相似文献   

10.
In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.  相似文献   

11.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

12.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   

13.
Oligosaccharides were derivatized by reductive amination using 2-aminobenzamide (2-AB) and analyzed by matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2-AB-derivatized oligosaccharides. A systematic study was conducted on a series of 2-AB-derivatized oligosaccharides to allow rationalization of the fragmentation processes. The MALDI-TOF/TOF-MS/MS spectra of the [M+Na]+ ions of 2-AB-derivatized oligosaccharides were dominated by glycosidic cleavages. These fragments originating both from the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, the MALDI-TOF/TOF-MS/MS spectra were also characterized by abundant cross-ring fragments which are very informative on the linkages of the monosaccharide residues constituting these oligosaccharides. MALDI-TOF/TOF-MS/MS analysis of 2-AB-derivatized oligosaccharides, by providing structural information at the low-picomole level, appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

14.
A reliable and sensitive ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC/Q‐TOF‐MS) method has been optimized and established for analysis of protostane triterpenoids in a commonly used traditional Chinese herbal medicine Alisma orientalis (Sam.) Juzep. The separation of crude extract of A. orientalis was achieved on a Waters ACQUITY HSS T3 column (100 mm × 2.1 mm, 1.8 µm) eluting with 0.1% (v/v) formic acid/acetonitrile. A total of 20 protostane triterpenoids including 19 known compounds and a new one were well separated within 7 min. The collision‐induced dissociation (CID) tandem mass spectrometric (MS/MS) fragmentation patterns of protostane triterpenoids was firstly reported in this study. The hydrogen rearrangement at the C‐23‐OH leads to dissociation of the bond between C‐23 and C‐24 in the protostane triterpenoid skeleton during the CID process. This dissociation was the characteristic CID fragmentation pathway of this class of triterpenoids, and was useful for further differentiation of some positional isomers which contain an acetyl unit on the C‐23 or C‐24 position. The identities of isolated compounds were identified by comparing their retention times and CID fragmentation behaviors with those of reference standards or tentatively assigned by matching the empirical molecular formulae with those reported in the literature. It is concluded that this newly established UPLC/Q‐TOF‐MS method is a powerful approach for structural elucidation of protostane triterpenoids isolated from A. orientalis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A fast liquid chromatography method with diode‐array detection (DAD) and time‐of‐flight mass spectrometry (TOF‐MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8‐µm porous particles (4.6 × 50 mm), three times faster than the performance of conventional 5.0‐µm columns (4.6 × 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD‐TOF‐MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)‐TOF‐MS experiments, elimination of a glucose unit (162 Da), and successive losses of H2O, CH3OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M–H–caffeoyl]? by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H2O, CO, RDA and C‐ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the ‘full mass spectral’ information of TOF‐MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
MALDI-TOF/TOF CID experiments were conducted on a variety of hydrogen-terminated poly(4-methylstyrene), hydroxylated poly(t-butylstyrene), and polystyrene precursor ions: n = 10, 15, 20, 25, and 30, where the number of repeat units n corresponds to the oligomer mass number. The influences of structure, molecular weight, and effective collision kinetic energy on degradation mechanisms were examined to test the generality of our multi-chain fragmentation model developed for polystyrene. Each depolymerization mechanism is presented in detail with experimental and computational data to justify/rationalize its occurrence and effective kinetic energy dependence. These processes show the complex interrelationship between the various pathways along with preferred production of secondary radicals, which suppresses the appearance of primary radicals. Additionally, Py-GC/MS experimental data are presented, for comparison of the multimolecular free radical reactions in pyrolysis with the unimolecular fragmentation reactions of MS/MS. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Pressure‐sensitive adhesives (PSA) are used to manufacture labels that are applied directly on the food. These adhesives could contain not only intentionally added compounds (IAS) to the adhesive formula but also non‐intentionally added substances (NIAS), due to the impurities from the raw materials used, decomposition of the initial components or from chemical interactions between them. These compounds could migrate to the food and contaminate it. In this study, gas chromatography coupled with mass spectrometry (GC‐MS/Q) and atmospheric pressure gas chromatography coupled to a quadrupole hyphenated to a time of flight mass spectrometer (APGC‐MS/Q‐TOF) have been used for identification of unknown compounds and NIAS coming from a PSA. Seven compounds were identified by GC‐MS/Q, and other eight compounds remained initially unknown. The structure of these eight new compounds was elucidated by working with the spectra obtained by APGC‐MS/Q‐TOF. Finally, two different migration studies were carried out. The first one with Tenax as solid food simulant in contact with the paper label containing the adhesive and the second one with isooctane filled in a natural pork intestine where the label containing the adhesive was applied on the external side. The results are shown and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Structure analyses of underivatized neutral lacto oligosaccharides are systematically performed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) and UV-MALDI ion-trap time-of-flight mass spectrometry (ion-trap/TOF MS) acquired in negative-ion mode. Interestingly, their fragmentation significantly differ each other. In postsource decay (PSD) in UV-MALDI TOF MS, cross-ring cleavage at the reducing terminal predominates. On the other hand, glycosyl bond cleavage (C-type fragmentation) takes place preferentially in collision induced dissociation (CID) in UV-MALDI ion-trap/TOF MS. The cross-ring cleavage in PSD similar to that in in-source decay occurs via a prompt reaction path characteristic of the UV-MALDI process itself. The product ion spectra of UV-MALDI ion-trap/TOF MS are similar to the electrospray ionization (ESI) ion-trap or quadrupole/TOF CID product ion spectra. During ion-trap/TOF MS experiments, the deprotonated molecular ions survive for several tens of milliseconds after CID event because the high internal energy chlorinated precursor ions are cooled by collisional cooling in the ion trap. The results obtained suggest that the PSD from the chlorinated precursor ion in UV-MALDI TOF MS might proceed as a two-step reaction; in the first, a high internal energy deprotonated molecular ion is generated as a reaction intermediate during the flight in the drift tube, and in the second, the rapid decomposition from the deprotonated molecular ion takes place.  相似文献   

19.
The interpretation of mass spectra is a key process during compound identification, and the combination of tandem mass spectrometry (MS/MS) with high-accuracy mass measurements may deliver crucial information on the identity of a compound. Obtaining accurate mass data of fragment ions in MS/MS reveals the particular problem of mass calibration when a lockmass, which is frequently used to obtain accurate masses in MS, is absent. An alternative technique is to recalibrate the MS/MS spectrum using a reference MS/MS spectrum acquired under the same conditions. We have tested and validated this approach using a hybrid quadrupole/orthogonal acceleration reflectron-type time-of-flight (TOF) mass spectrometer. The results were compared with those obtained under similar conditions on a Fourier transform ion cyclotron resonance (FT-ICR) instrument. We found that the mass accuracy observed with such an "external" recalibration on the TOF instrument in MS/MS is identical to what can be obtained on a similar instrument operating in one-dimensional MS mode using the lockmass technique. However, mass accuracy in both cases is one order of magnitude inferior to that obtained using FTMS, and also inferior to that observed using sector field MS when operated at comparable resolution. Nevertheless, for small (<200 Da) molecules, this mass accuracy was still sufficient to have the "true" elemental composition identified as the first hit in about 70% of all cases. It was possible to elucidate the fragmentation mechanism of eight azaheterocycles containing a pyridine moiety, where the accurate mass data from the TOF instrument allowed distinction between two alternative fragmentation pathways.  相似文献   

20.
Matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) has been introduced in recent years as a valuable tool for the structural characterization of permethylated oligosaccharides. In this report, we describe the combination of MALDI in-source decay (ISD) with the subsequent TOF/TOF-MS analyses of specific fragments, allowing the detailed characterization of the selected part of the oligosaccharide molecule. Part of the second-generation fragment ions were different from those observed in conventional MALDI-TOF/TOF-MS experiments. Other fragments, which had already been observed in conventional MALDI-TOF/TOF-MS and again showed up in second-generation fragment analysis, could be assigned to specific parts of the molecule. Our approach disclosed different structural features of the oligosaccharides: due to permethylation, the glycosidic linkage fragments allowed the distinction between terminal, monosubstituted and disubstituted monosaccharides and indicated the oligosaccharide sequence. Moreover, substitution positions were deduced based on characteristic cross-ring fragmentation by high-energy collision-induced fragmentation. In conclusion, combination of MALDI-ISD with TOF/TOF-MS allows the detailed characterization of specific moieties of permethylated oligosaccharides and is, therefore, a powerful technique for structural glycomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号