首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The interaction between two similar plane double-layers for Al2(SO4)3 type asymmetric electrolytes was investigated with the aid of λ parameter method. The interaction energies for the system at positive surface potential were expanded in the power series at low and high potential, respectively. The high potential formula can be applied to 0.2 ≤ ye  < y 0 ≤ 20. This almost covers with the bounds of all potential, and that the calculative method is relative simple. The accurate numeral results and V′?ξd curves were given for y 0 ≤ 20. When y 0 ≥ 5, V′ hardly change with y 0. The interaction energies between two similar plane parallel double layers for the different type electrolytes at y 0 = 1 were compared. The present results are also fit for Mg3(PO4)2 type electrolytes at negative surface potential.  相似文献   

2.
TiO2 (B) and TiO2 anatase nanowires were prepared at 150 °C for 120 h by a hydrothermal method followed by calcination in air at 400 °C for 2 h and at 700 °C for 2 h for TiO2 (B) and TiO2 anatase, respectively. Although dye-sensitized solar cells (DSC) with fully nanowire electrodes showed a rather low light-to-electricity conversion efficiency of 1.33 % for TiO2 (B) and 2.42% for TiO2 anatase, 10 wt % nanowire-dispersed electrodes in a P-25 TiO2-nanoparticle matrix demonstrated improved efficiency of 6.17 % for TiO2 (B) and 6.53% for TiO2 anatase, these exceeding that of pure P-25 electrodes in this work (η=5.59%). The dominant mechanisms of the improvement at 10 wt% for the two different polymorphs are thought to be different, i.e., a light-scattering and film-thickness increment for the TiO2 (B) system, whereas there is an improved conduction path through the matrix for the TiO2 anatase system.   相似文献   

3.
Mixtures of NiCo2O4 and FeO x were obtained by thermal decomposition of the nitrates of Ni, Co, and Fe in appropriate proportions. Two series of electrodes were prepared: (1) at constant composition (20 mol% FeO x ) and various calcination temperatures in the range 200 to 480 °C and (2) at constant calcination temperature (300 °C) and various compositions in the whole composition range 0 to 100 mol% FeO x . The oxide layers were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and cyclic voltammetry. Experimental data showed that the layers consist of a mixture of phases in which Fe oxide is present as Fe2O3. The electrocatalytic properties were assessed by means of quasi-stationary potentiostatic current-potential curves for the O2 evolution reaction from alkaline solution. Results have shown that the mechanism of O2 evolution depends on composition moderately. The electrocatalytic activity appears to depend on composition only slightly. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007.  相似文献   

4.
Electrochemical parameters of an H2|air fuel cell with a membrane of solid electrolyte CsHSO4 or composites (1 − x)CsHSO4/xSiO2 (x = 0.1–0.3) and different electrodes are measured at 175 °C. The maximal power (3.5 mW/cm2 at a voltage of 0.6 V) is obtained for a cell with platinum-black electrodes and an intermediate layer of a mixture of platinum black and the electrolyte material. In the absence of a platinum catalyst, CsHSO4 and composites CsHSO4/SiO2 are chemically stable in hydrogen at the operating temperature of the fuel cell.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 556–559.Original Russian Text Copyright © 2005 by Lavrova, Russkikh, Ponomareva, Uvarov.  相似文献   

5.
Interaction energies between two similar plane parallel double layers for (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 type complex salt electrolytes at positive surface potential were expanded in a power series and accurate numeral results were given for 0.1 ≤ y e  < y 0 ≤ 20. The general expressions were given for the interaction energies of A ν +B ν′ +Cν? type complex salt electrolytes at y > 0. The interaction energies for simple salts NaCl, CaCl2, Na2SO4, FeCl3, Na3PO4, Mg3(PO4)2, Al2(SO4)3, and complex salts (NH4)2Fe(SO4)2 or (NH4)2Cu(SO4)2 at y 0 = 1 were compared. There was hardly difference between these simple salts and this complex salt for the interaction energies. The interaction energy for complex salt (NH4)2Fe(SO4)2 was close to that for simple salt Na3PO4.

Supplemental files are available for this article. Go to the publisher's online edition of the Journal of Dispersion Science and Technology to view the free supplemental file.  相似文献   

6.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

7.
    
Hirudonine sulphate (C9H23N7. 1·5 H2SO4. 2·5 H2O) is triclinic inPI space group with cell constantsa=7·168(9),b=14·534(6),c=11·918(5) ?, α=110·50(3), β=108·75(6) and γ=79·16(6)°,V=1097(2)?3,Mr=421·4,Z=2,d x=1·358(2) gcm−3,d c=1·276 gcm−3. MoKα (λ=0·7903 ?), μ=1·94 cm−1,F(000)=436,T=295 K,R(F)=0·144. The structure was solved by direct methods and refined to a final R factor of 0·144 for 1036 unique reflections. One of the sulphur atoms is in special position and is disordered. The amine molecule is hydrogen-bonded to the sulphate oxygen through water molecules. Water channels are formed at unique places involving water oxygens, amine and sulphate oxygens along thea axis. DCB contribution Number 712.  相似文献   

8.
采用水热法制备了0D/2D复合Ti3C2Tx MXene,利用X射线衍射、动态光散射和荧光光谱表征了其结构与形貌,结果表明形成了量子点吸附于纳米片的Ti3C2Tx复合结构(QDT)。相比未引入量子点的Ti3C2Tx,由QDT组装得到的自支撑膜电极的电化学性能有了显著提高:在三电极体系中,扫速为5 mV·s-1时,比电容为338 F·g-1,当扫速达到2 000 mV·s-1,电容保持率达到46%;在两电极体系中,0.5 A·g-1时的比电容达到216 F·g-1,10 000次循环后电容保持率为87%。以上性能可归结于:量子点提供了更多的离子吸附位点,且纳米片尺寸减小,缩短了离子传输路径。  相似文献   

9.
The differential pulse (dp) polarograms of thiamine in neutral aqueous solutions exhibited six peaks at low depolarizer concentration (⋦10−4 mol dm−3) and only three peaks at concentrations ≥10−3 mol dm−3. Only one of these was found to correspond to the diffusion-controlled reduction of this compound at the dme and this was shown to be an irreversible two-electron process. The kinetic parameters derived from the dp polarograms were found to be in good agreement with those calculated from classical polarograms and were:E 1/2=−1·261 Vvs SCE,an a=0·54 andD≈3·5×10−6 cm2 sec−1 for 10−3 mol dm−3 thiamine in 0·1 mol dm−3 acetate buffer (pH 6·5). The reduction product has been identified as dihydrothiamine. The effect of pH on the dpp of thiamine was studied in the pH range 0–7. In the pH region 5·5 to 7·0 only one peak attributable to the B1 + form of thiamine is present. In the pH region 3·5–5·5 another dpp peak attributable to the protonated form (B1H2+) of thiamine was also observed. At pHs less than 3 only one peak was observed which could be attributed to the doubly protonated form (B1 H2 3+) of thiamine. Surfactants like triton-X-100 and CTABr were found to inhibit the electroreduction of thiamine due to the strong adsorption of these compounds on the dme. Thiamine itself was found to have an inhibitory effect on its own electroreduction, although to a smaller extent.  相似文献   

10.

Porous platinum electrodes on ZrO2 + 10 mol % Y2O3 solid electrolyte (YSZ) are activated by Tb1 ? xCexO2 ? α (x = 0; 0.15; 0.33; 0.5; 1.0) mixed oxides by impregnation, and their polarization characteristics are studied. The activation is carried out under the conditions that an oxide activator nanofilm forms on the electrolyte surface as a result of heat treatment of the electrode. The activation is performed by impregnating the electrodes with low-concentrated alcohol solution of terbium and cerium nitrates (1.5% as recalculated to the oxides) and subsequent slow heating (≤50°C/h) to 850°C. An average thickness of the film on the electrolyte after a single activation (≈0.1 mg oxides/cm2) is estimated at 10–20 nm. The electrodes of Pt|YSZ|Pt cell activated by Tb1 ? xCexO2 ? α films are studied by the impedance method in the oxidative and reductive atmospheres in the range of 700 to 500°C. The polarization conductivities of the activated electrodes increase by 2–3 orders of magnitude. The studied electrodes are discussed within the model of compact oxide electrodes, where platinum plays the role of collector. The advantage of these electrodes is that they can work both in the oxidative and reductive conditions. According to the aggregate of the properties, Tb1 ? xCexO2 ? α compounds at x = 0.3–0.5 are recommended for activation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号