首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Control of stereochemistry during aldol addition reactions has attracted considerable interest over the years as the aldol reaction is one of the most fundamental tools for the construction of new carbon-carbon bonds. Several strategies have been implemented whereby eventually any single possible stereoisomeric aldol product can be accessed by choosing the appropriate procedure. With earlier methods, stoichiometric quantities of chiral reagents were required for efficient asymmetric induction, with the auxiliary most often attached covalently to the substrate carbonyl. Lewis acid catalyzed addition reactions of silyl enolates to aldehydes (Mukaiyama reaction) later opened the way for catalytic asymmetric induction. In the last few years, both chiral metal complexes and small chiral organic molecules have been found to catalyse the direct aldol addition of unmodified ketones to aldehydes with relatively high chemical and stereochemical efficiency. These techniques along with the more recent developments in the area are discussed in this tutorial review.  相似文献   

2.
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral FeII and BiIII complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (?78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water‐compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1 , which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a FeII or BiIII metal salt, a chiral ligand ( L1 ), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo‐ and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the FeII and BiIII centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the FeII‐catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.  相似文献   

3.
Aldol condensation is an important synthetic method widely used in organic synthesis. Development of catalytic methods that avoids the production of stoichiometric by-products while maintaining high levels of control available from stoichiometric processes provides an atom-economical alternative for these important transformations. Indeed, numerous catalysts for the aldol reaction have been reported in recent years, including enzymes, catalytic antibodies, organometals, organocatalysts, and small molecules. The direct aldol reaction is the most important reaction employed by synthetic chemists and is common in nature. Recently, various Lewis acids have been examined as catalysts for aldol reactions, but aldol condensation in a micellar medium has not been studied in detail so far. Because of stronger environmental concerns, organic reactions in green media, especially in water, have attracted more attention. It is believed that micelles act as nano reactors to enhance the reaction rates and give very good to excellent yields of end products.  相似文献   

4.
Nature has perfected the stereospecific aldol reaction by using aldolase enzymes. While virtually all the biochemical aldol reactions use unmodified donor and acceptor carbonyls and take place under catalytic control in an aqueous environment, the chemical domain of the aldol addition has mostly relied on prior transformation of carbonyl substrates, and the whole process traditionally is carried out in anhydrous solvents. The area of aqua-asymmetric aldol reactions has received much attention recently in light of the perception both of its green chemistry advantages and its analogy to eon-perfected enzyme catalysis. Both chiral metal complexes and small chiral organic molecules have been recently reported to catalyze aldol reactions with relatively high chemical and stereochemical efficiency. This tutorial review describes recent developments in this area.  相似文献   

5.
黄欣 《广州化学》2011,36(2):51-58
扼要综述了有机手性胺催化在过去十年中的发展,列举了具有代表性的活化模式(如仲胺催化的活化模式)、催化剂(如手性叔胺有机催化剂)和反应类型(如分子内Aldol环化反应,分子间Aldol缩合反应,Lewis酸活化羰基化合物机制,手性胺催化等),并提出了该领域新的研究方向.手性胺不对称催化在手性合成中具有广阔的应用前景.  相似文献   

6.
Ralph J.R. Lumby 《Tetrahedron》2008,64(33):7729-7740
In the presence of diethylzinc as a stoichiometric reductant, substoichiometric quantities of an appropriate cobalt source catalyse diastereoselective reductive aldol coupling reactions of α,β-unsaturated amides with ketones. The use of a readily available oxazolidine as a chiral auxiliary imparts high levels of asymmetric induction in these reactions.  相似文献   

7.
The construction of C-C bonds with complete control of the stereochemical course of a reaction is of utmost importance for organic synthesis. The aldol reaction-the simple addition of an enolate donor to a carbonyl acceptor-is one of the most powerful reactions available to the synthetic chemist. In general, control of the relative and absolute configuration of the newly formed stereogenic centers has been achieved through the use of chiral starting materials or chiral auxiliaries. In recent years the search for catalytic methods that efficiently and effectively transfer chirality information has become a major effort in synthetic organic chemistry. Two different approaches have been taken toward the catalytic asymmetric aldol reaction: biocatalysis and catalysis with small molecules. Both approaches have specific advantages and limitations, and as a result are complementary to each other. The important efforts toward both approaches are reviewed in this article.  相似文献   

8.
The conventional procedures for preparing optically active axially chiral allenes generally require stoichiometric chiral sources as either substrates or reagents. On the other hand, examples of catalytic asymmetric synthesis of axially chiral allenes are rare and it is a relatively underdeveloped area in synthetic organic chemistry. In this review article, various methods for preparing enantiomerically enriched axially chiral allenes using substoichiometric chiral sources are surveyed. Some reactions with stoichiometric but recoverable chiral sources are also mentioned. Most of the asymmetric reactions in these categories are transition-metal-catalyzed reactions, and there are a few examples of organocatalytic reactions. In addition, some enzymatic/microbial systems are also known.  相似文献   

9.
Different densely substituted L- and D-proline esters were prepared by asymmetric (3+2) cycloaddition reactions catalyzed by conveniently selected EhuPhos chiral ligands. The γ-nitro-2-alkoxycarbonyl pyrrolidines thus obtained in either their endo or exo forms were functionalized and coupled to yield the corresponding γ-dipeptides. The catalytic properties of these latter dimers were examined using aldol and conjugate additions as case studies. When aldol reactions were analyzed, an additive behavior in terms of stereocontrol was observed on going from the monomers to the dimers. In contrast, in the case of the conjugate additions between ketones and nitroalkenes, the monomers did not catalyze this reaction, whereas the different γ-dipeptides promoted the formation of the corresponding Michael adducts. Therefore, in this latter case emergent catalytic properties were observed for these novel γ-dipeptides based on unnatural proline derivatives. Under certain conditions stoichiometric amounts of ketone, acid and nitroalkene), formation of N-acyloxy-2-oxooctahydro-1H-indoles was observed.  相似文献   

10.
手性相转移催化剂及其在不对称催化反应中的应用   总被引:1,自引:0,他引:1  
综述了手性季铵盐、手性冠醚以及其它新型手性相转移催化剂的制备及其在各种不对称相转移催化反应如烷基化反应、Michael加成反应、Aldol反应、Mannich反应、氧化反应及还原反应中应用的最新进展.  相似文献   

11.
钟丽琴  唐瑞仁  杨青 《化学进展》2007,19(6):902-910
具有C2对称性的双噁唑啉型吡啶(pybox)是一类有效的手性配体,能与许多金属离子配位,其手性催化性能已得到越来越多的关注。本文综述了手性配体pybox和pybox-金属络合物的合成方法,特别是近年来pybox-金属络合物在不对称催化反应如不对称环丙烷化反应、不对称Diels-Alder反应、1,3-偶极环加成反应、不对称aldol反应等中应用的最新进展。  相似文献   

12.
In this article the utility of water-compatible amino-acid-based catalysts was explored in the development of diastereo- and enantioselective direct aldol reactions of a broad range of substrates. Chiral C(2)-symmetrical proline- and valine-based amides and their Zn(II) complexes were designed for use as efficient and flexible chiral catalysts for enantioselective aldol reactions in water, on water, and in the presence of water. The presence of 5 mol % of the prolinamide-based catalyst affords asymmetric intermolecular aldol reactions between unmodified ketones and various aldehydes to give anti products with excellent enantioselectivities. We also demonstrate aldol reactions of more demanding substrates with high affinity to water (i.e., acetone and formaldehyde). Newly designed serine-based organocatalyst promoted aldol reaction of hydroxyacetone leading to syn-diols. For presented catalytic systems organic solvent-free conditions are also acceptable, making the elaborated methodology interesting from a green chemistry perspectives.  相似文献   

13.
Catalytic asymmetric aldol reactions in aqueous media have been developed using chiral zinc complex. The aldol products have been obtained in high yields, high diastereocontrol, and good level of enantioselectivity. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones can be employed in this reaction to provide the aldol adducts in good to high yield. The elaborated catalytic system has been found as selective for aliphatic aldehydes as well.  相似文献   

14.
This account examines double asymmetric induction from theoretical and practical viewpoints. In the context of four major organic reactions-the aldol, Diels-Alder, catalytic hydrogenation, and epoxidation-it is shown that a double asymmetric induction can be analyzed in terms of the single asymmetric reactions of each of the two chiral reactants. A rule which qualitatively relates the results of these single asymmetric reactions with the outcome of the double asymmetric reaction is proposed. A powerful new strategy based on this rule for the predictable creation of new chiral centers is discussed and the use of this strategy for the synthesis of sugars and macrolides is presented.  相似文献   

15.
The asymmetric direct aldol reactions of aliphatic ketones (acetone, butanone, and cyclohexanone) with 4-nitrobenzaldehyde catalyzed by a chiral primary-tertiary diamine catalyst (trans-N,N-dimethyl diaminocyclohexane) have been investigated by performing density functional theory calculations to rationalize the experimentally observed stereoselectivities. Focused on the crucial C-C bond-forming steps, we located several low-lying transition states and predicted their relative stabilities. The calculated results demonstrate that the catalytic direct aldol reactions of acetone favors the (S)-enantiomer and that butanone prefers the branched syn-selective product, while cyclohexanone yields predominantly the opposite anti-selective product. The theoretical results are in good agreement with the experimental findings and provide a reasonable explanation for the high enantioselectivity and diastereoselectivity, as well as regioselectivity, of the aldol reactions under consideration.  相似文献   

16.
[structure: see text] [structure: see text] New oligomeric chiral macrocyclic ligands have been synthesized using an efficient self-assembly method. High enantioselective cooperativity in the catalytic asymmetric aldol reactions was directly observed using the conceptually novel chiral multinuclear complex catalysts.  相似文献   

17.
This article describes the generation of chiral palladium enolates and their application to several kinds of catalytic asymmetric reactions. Two methods to generate chiral enolates were developed using novel cationic palladium complexes 1 and 2 . In these processes, water or a hydroxo ligand on palladium metal plays an important role as a nucleophile to promote the transmetallation or as a Brønsted base to abstract an acidic α‐proton of the carbonyl group. These enolates showed sufficient reactivity with various electrophiles. Using a chiral Pd enolate as a key intermediate, highly enantioselective reactions such as catalytic aldol reactions, Mannich‐type reactions, Michael reactions, and fluorination reactions were developed. The unique structures of the palladium enolate complexes were elucidated and reaction mechanisms are proposed. © 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 231–242; 2004: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20017  相似文献   

18.
Highly efficient asymmetric aldol reactions between α,β-unsaturated keto esters and acyclic ketones catalyzed by chiral diamines are reported. The corresponding products were obtained in excellent yields with excellent enantioselectivities. The absolute configuration for the product was determined by X-ray analysis. A variety of substrates were tolerable in the present catalytic system.  相似文献   

19.
Two enantiomeric Zn-MOFs, having l- or d-proline chiral functionality, were achieved through in situ click reactions by modifying two opposite chiral adducts within the same pre-assembled achiral MOFs, respectively. Both of them exhibited remarkable catalytic activities in the relative asymmetric aldol reactions, and led to the formation of opposite enantiomorphs. The significant advantage of this approach not only includes the conversion of chemically and thermally robust MOFs into enantiomeric chiral material having catalytically active sites, but also involves the potential applications in asymmetric transformations with desirable chiralities of a special enantiomorph.  相似文献   

20.
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon–carbon bond‐forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post‐aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non‐enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post‐aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号