首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

2.
A series of Rebek imide receptors with naphthalene or heteroaromatic platforms attached by amide or ester linkers have been prepared from the corresponding acyl chloride or anhydride; the X-ray crystal structure of the receptor-derived anhydride reveals a supramolecular H-bonded helix formation in the crystal; the complexes of adenine bound to the receptors by Hoogsteen H-bonding are found to be stabilised by stacking with a methylquinolinium ion, but destabilised by stacking with a perfluorinated naphthalene.  相似文献   

3.
Blocking of Watson-Crick or Hoogsteen edges in purine nucleobases by a metal entity precludes involvement of these sites in interbase hydrogen bonding, thereby leaving the respective other edge or the sugar edge as potential H bonding sites. In mixed guanine, adenine complexes of trans-a2PtII (a = NH3 or CH3NH2) of composition trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](NO3)2 (1a), trans-[(NH3)2Pt(9-EtA-N1)(9-MeGH-N7)](ClO4)2 (1b), and trans,trans-[(CH3NH2)2(9-MeGH-N7)Pt(N1-9-MeA-N7)Pt(9-MeGH-N7)(CH3NH2)2](ClO4)4*2H2O (2) (with 9-EtA = 9-ethyladenine, 9-MeA= 9-methyladenine, 9-MeGH = 9-methylguanine), this aspect is studied. Thus, in 1b pairing of two adenine ligands via Hoogsteen edges and in 2 pairing of two guanine bases via sugar edges is realized. These situations are compared with those found in a series of related complexes.  相似文献   

4.
The structures of the open‐chain amide carboxylic acid raccis‐2‐[(2‐methoxyphenyl)carbamoyl]cyclohexane‐1‐carboxylic acid, C15H19NO4, (I), and the cyclic imides raccis‐2‐(4‐methoxyphenyl)‐3a,4,5,6,7,7a‐hexahydroisoindole‐1,3‐dione, C15H17NO3, (II), chiral cis‐3‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid, C15H15NO4, (III), and raccis‐4‐(1,3‐dioxo‐3a,4,5,6,7,7a‐hexahydroisoindol‐2‐yl)benzoic acid monohydrate, C15H15NO4·H2O, (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least‐squares plane = 0.060 (1) Å for the amide O atom] and the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy–carboxy O—H...O hydrogen‐bonding interactions [graph‐set notation R22(8)]. The cyclic imides (II)–(IV) are conformationally similar, with comparable benzene ring rotations about the imide N—Car bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak intermolecular C—H...Oimide hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O—H...O hydrogen‐bonding associations. With (III), these involve imide O‐atom acceptors, giving one‐dimensional zigzag chains [graph‐set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxy O‐atom acceptors in a cyclic R44(12) association, giving a two‐dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis‐cyclohexane‐1,2‐dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.  相似文献   

5.
Chloroform- and Freon-soluble mixed thymine, adenine complexes trans-[Pt(MeNH(2))(2)(ChmT-N3)(ChmA-N1)]NO(3) (2) and trans-[Pt(MeNH(2))(2)(ChmT-N3)(TBDMS-ado-N1)]BF(4) (3) (ChmT = anion of 1-cyclohexylmethylthymine ChmTH, ChmA = 9-cyclohexylmethyladenine, TBDMS-ado = 2',3',5'-tri-tert-butyldimethylsilyladenosine) have been prepared and characterized to study their propensity to undergo Hoogsteen and/or reversed Hoogsteen pairing in solution with free ChmTH and free 3',5'-diacetyl-2'-deoxyuridine, respectively. No Hoogsteen or reversed Hoogsteen pairing between 2 and ChmT takes place in CDCl(3). In Freon, partial H bonding between N1 platinated TBDMS-ado and 3',5'-diacetyl-2'-deoxyuridine as well as its [3-(15)N] labeled analogue is unambiguously observed only below 150 K. Comparison of (1)J ((15)N-(1)H) coupling constants of 3',5'-diacetyl-2'-deoxyuridine involved in Hoogsteen pairing with free and N1 platinated adenine suggests that the interaction is inherently weaker in the case of platinated adenine. To better understand the complete absence of hydrogen bonding between the ChmA ligand in 2 and free ChmTH, ab initio calculations (gas phase, 0 K) have been carried out for Hoogsteen pairs involving adenine (A) and thymine (T), as well as simplified analogues of 2 and T, both in the presence and absence of counteranions. The data strongly suggest that reduction of the effective positive charge of the heavy metal ion Pt(2+) by counterions diminishes interaction energies. With regard to mixtures of 2 and ChmTH in chloroform, this implies that ion pair formation between the cation of 2 and NO(3)(-) may be responsible for the lack of any measurable Hoogsteen pairing in this solvent.  相似文献   

6.
Macrocyclic Imides: Versatile Synthons in Ring-Enlargement Reactions Macrocyclic imides differ from phthal- or succinimids in their increased electrophilicity. This property makes them versatile synthons for reactions with several nucleophiles. If a nucleophile is attached to the N-substituent of the imide, an intramolecular reaction will occur leading to ring-enlarged products. Use of N, O, and C nucleophiles for this synthetic pathway is reported. Synthetic transformations of e.g. cyclododecanone leads to 17-, 18-, or 19-membered macrolides, 11, 12, 15, 16, 21, 27, 30 , in three to five steps.  相似文献   

7.
The condensation of the CH acidic heterocycles 4-alkyl-2,6-dioxo-1,2,5,6-tetrahydropyridine-3-carbonitrile (5a and b) and barbituric acid (15) with electron-rich thiophene aldehydes and benzaldehyde derivatives affords the respective monomethine dyes 10-13 and 17-19. The formylation of 5a,b and 15 with N,N'-diphenylformamidine or dibutylformamide in acetic anhydride and further reaction with 4-picolinium salts 9a,b provide the dimethine dyes 14 and 20a,b. Triple hydrogen bonding of the imide groups of merocyanine dyes 10-14 has been investigated by NMR titration experiments with melamine 21. Despite rather pronounced variations of the charge-transfer properties within the given series of dyes, minor changes of their binding constants have been observed. These results could be rationalized by semiempirical calculations that reveal small changes in the charge density at the oxygen functionalities involved in hydrogen bonding upon variation of the electron-donating carbocyclic or heterocyclic groups at the terminal double bond. Although the binding constants for triple hydrogen bonding between imides and melamines are rather weak in chloroform, they proved to be strong enough to facilitate dissolution of some of these dyes in aliphatic solvents by coordination to amphiphilic melamines and dipolar aggregation. UV-vis spectral changes observed in methylcyclohexane vs chloroform suggest the formation of colloidal assemblies through noncovalent polymerization.  相似文献   

8.
Microhydration effects upon the adenine-uracil (AU) base pair and its radical anion have been investigated by explicitly considering various structures of their mono- and dihydrates at the B3LYP/DZP++ level of theory. For the neutral AU base pair, 5 structures were found for the monohydrate and 14 structures for the dihydrate. In the lowest-energy structures of the neutral mono- and dihydrates, one and two water molecules bind to the AU base pair through a cyclic hydrogen bond via the N(9)-H and N(3) atoms of the adenine moiety, while the lowest-lying anionic mono- and dihydrates have a water molecule which is involved in noncyclic hydrogen bonding via the O4 atom of the uracil unit. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of the AU base pair are predicted to increase upon hydration. While the VDE and AEA of the unhydrated AU pair are 0.96 and 0.40 eV, respectively, the corresponding predictions for the lowest-lying anionic dihydrates are 1.36 and 0.75 eV, respectively. Because uracil has a greater electron affinity than adenine, an excess electron attached to the AU base pair occupies the pi* orbital of the uracil moiety. When the uracil moiety participates in hydrogen bonding as a hydrogen bond acceptor (e.g., the N(6)-H(6a)...O(4) hydrogen bond between the adenine and uracil bases and the O(w)-H(w)...N and O(w)-H(w)...O hydrogen bonds between the AU pair and the water molecules), the transfer of the negative charge density from the uracil moiety to either the adenine or water molecules efficiently stabilizes the system. In addition, anionic structures which have C-H...O(w) contacts are energetically more favorable than those with N-H...O(w) hydrogen bonds, because the C-H...O(w) contacts do not allow the unfavorable electron density donation from the water to the uracil moiety. This delocalization effect makes the energetic ordering for the anionic hydrates very different from that for the corresponding neutrals.  相似文献   

9.
The structures of the cyclic imides cis‐2‐(2‐fluorophenyl)‐3a,4,5,6,7,7a‐hexahydroisoindole‐1,3‐dione, C14H14FNO2, (I), and cis‐2‐(4‐fluorophenyl)‐3a,4,5,6,7,7a‐hexahydroisoindoline‐1,3‐dione, C14H14FNO2, (III), and the open‐chain amide acid raccis‐2‐[(3‐fluorophenyl)carbamoyl]cyclohexane‐1‐carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N—Car bond [the dihedral angles between the benzene ring and the five‐membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta‐related F‐atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide–carboxyl N—H...O hydrogen‐bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl–amide O—H...O hydrogen bonds, giving two‐dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.  相似文献   

10.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

11.
The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.  相似文献   

12.
A thiourea-catalyzed asymmetric Michael addition of activated methylene compounds to alpha,beta-unsaturated imides derived from 2-pyrrolidinone and 2-methoxybenzamide has been developed. In the case of 2-pyrrolidinone derivatives, the reaction with malononitrile proceeded in toluene with high enantioselectivity, providing the Michael adducts in good yields. However, the nucleophiles that could be used for this reaction were limited to malononitrile due to poor reactivity of the substrate. Further examination revealed that N-alkenoyl-2-methoxybenzamide was the best substrate among the corresponding benzamide derivatives bearing different substituents on the aromatic ring. Indeed, several activated methylene compounds such as malononitrile, methyl alpha-cyanoacetate, and nitromethane could be employed as a nucleophile to give the Michael adducts in good to excellent yields with up to 93% ee. The results of spectroscopic experiments clarified that this enhanced reactivity can be attributed to the intramolecular hydrogen-bonding interaction between the N-H of the imide and the methoxy group of the benzamide moiety. Thus, the key to the success of the catalytic enantioselective Michael addition is dual activation of the substrate by both intramolecular hydrogen bonding in the imide and intermolecular hydrogen bonding with thiourea 1a, as well as the activation of a nucleophile by the tertiary amine of the bifunctional thiourea.  相似文献   

13.
Crystal structures are reported for various co-crystals of rccc-resorcarenes with triethylammonium chloride. Usually, two molecules of a C2v-symmetric tetraester 2 in the boat conformation are linked through four hydrogen-bonded chloride anions to give dimeric assemblies. Two of the chloride anions may be replaced by four hydrogen-bonded ethanol molecules in an otherwise similar structure. These assemblies, which consist of six or eight components, posses voluminous, negatively charged chambers in which two triethylammionium cations, 3+, are included as guests by strong electrostatic and hydrogen-bonding interactions. The host-guest N-H...Cl hydrogen bonds were clearly detected at 173 K. These are the first examples of hydrogen-bonded, solid-state capsules trapping two ions of the same charge in close proximity. In the 1:2 complex with 3+ Cl-, the molecule of the parent resorcarene 1 also adopts a boat conformation whose cavity is considerably extended by four hydrogen-bonded chloride anions. The pocket formed in this way again includes two 3+ ions as a result of electrostatic and hydrogen bonding host-guest interactions. All these structures show that the boat conformers of resorcarenes can be used as a novel motif for the construction of hydrogen-bonded assemblies capable of molecular inclusion and encapsulation.  相似文献   

14.
An empirically based relationship between overall complex stability (-DeltaG degrees ) and various possible component interactions is developed to probe the question of whether the A.T/U and G.C base-pairs exhibit enhanced stability relative to similarly hydrogen-bonded complexes. This phenomenological approach suggests ca. 2-2.5 kcal mol-1 in additional stability for A.T owing to a group interaction containing a CH...O contact. Pairing geometry and the role of the CH...O interaction in the A.T base-pair were also probed using MP2/6-31+G(d,p) calculations and a double mutant cycle. The ab initio studies indicated that Hoogsteen geometry is preferred over Watson-Crick geometry in A.T by ca. 1 kcal mol-1. Factors that might contribute to the preference for Hoogsteen geometry are a shorter CH...O contact, a favorable alignment of dipoles, and greater distances between secondary repulsive sites. The CH...O interaction was also investigated in model complexes of adenine with ketene and isocyanic acid. The ab initio calculations support the result of the phenomenological approach that the A.T base-pair does have enhanced stability relative to hydrogen-bonded complexes with just N-H...N and N-H...O hydrogen bonds.  相似文献   

15.
The crystal structures for three types of three-dimensional (3-D) hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene (1), the network morphologies of which depend greatly on crystallization conditions, have been determined. When this compound is crystallized from hot DMSO, the resulting crystals, 1.12DMSO (orthorhombic, Pca2(1)), showed a 3-D hydrogen-bonded porous network (type A) via 1-D catemer chains as a hydrogen-bonding motif of six primary amide groups. The type A network creates chambers surrounded by six molecules of 1 and channels along the c axis to give the highest porosity among the network polymorphs of 1 investigated here. Crystallization from a boiling mixture of n-PrOH and water gave 1.6n-PrOH (monoclinic, P2(1)/c), which exhibits another type of 3-D hydrogen-bonded porous network (type B) via cyclic dimers as another hydrogen-bonding motif of six primary amide groups. The type B network leads to triangle-like channels along the a axis having a cross section of ca. 9.2 x 9.7 x 9.7 A (including van der Waals radii). The crystal structure of 1.H(2)O (monoclinic, P2(1)/c), which was produced under hydrothermal conditions, showed a nonporous 3-D hydrogen-bonded network chain of amide groups (type C) composed of a mixed hydrogen bonding motif of helical catemer chains/cyclic dimer/catemer. Solvent-induced topological isomerism of these 3-D hydrogen-bonded networks of 1 arises from (i) the guest inclusion ability based on a radially functionalized hexagonal structure of 1, (ii) the correlation between the hydrogen bond donor ability of the syn and anti protons of the primary amide group in host 1 and the hydrogen bond acceptor ability of the oxygen atoms of 1 and guest solvents, and (iii) the polarity of the bulk crystallization solvents.  相似文献   

16.
In the title compound (systematic name: 6‐benzylamino‐7H‐purin‐3‐ium p‐toluenesulfonate), C12H12N5+·C7H7O3S, the adenine moiety exists as the N3‐protonated N7—H tautomer. The dihedral angle between the adenine ring system and the phenyl ring is 82.76 (11)°. Two of the sulfonate O atoms form C—H...O and N—H...O hydrogen bonds with the H atoms on the N and C atoms in the 3‐ and 8‐positions, respectively, of the adenine moiety, leading to a zigzag chain. Two antiparallel zigzag chains are linked by the remaining sulfonate O atom through Hoogsteen‐site H atoms (i.e. those on the N atoms in the 6‐ and 7‐positions) of the adenine moiety, leading to a double chain. An annulus formed by a pair of inversion‐related anions and cations has been identified. An intramolecular toluenesulfonate–phenyl C—H...π interaction is also present.  相似文献   

17.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

18.
The cocrystals of adenine and metal (II) quinoline-2-carboxylates (M = Mn2+, Fe2+, Co2+) have been obtained by self-assembly. The complexes are composed of adenine ribbons with the AA22 pairing pattern involving both Watson-Crick and Hoogsteen faces in hydrogen bonding and the neutral molecules of carboxylate positioned in inorganic layers. The very compact supramolecular structure is made by the extensive system of hydrogen bonds and face-to-face pi-pi interactions.  相似文献   

19.
Diethyl 2‐[(2‐hydroxyanilino)methylidene]malonate, (I), and diethyl 2‐[(4‐hydroxyanilino)methylidene]malonate, (II), both C14H17NO5, crystallize in centrosymmetric orthorhombic and monoclinic crystal systems, respectively. Compound (I) resides on a crystallographic mirror plane and displays bifurcated intramolecular hydrogen bonding, as well as intermolecular hydrogen bonding due to the position of the hydroxy group. Compound (II) has a single intramolecular N—H...O hydrogen bond. Infinite one‐dimensional head‐to‐tail chains formed by O—H...O hydrogen bonding are present in both structures. The molecular packing is mainly influenced by the intermolecular O—H...O interactions. Additionally, C—H...O interactions crosslinking the chains are found in (II).  相似文献   

20.
为了了解怎样利用核磁共振技术研究氢键的键合方式,本文以联酰胺衍生物为例,分别运用变温核磁共振氢谱和变浓度核磁共振氢谱分析了羰基(CO)与氨基(H—N)之间形成氢键的形式。结果表明,本文举例中联酰胺基团中的CO与H—N以分子间氢键形式存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号