首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Salen(tBu) ligand and its derivatives were used to prepare binuclear boron complexes. These compounds have the formula, L(BBr2)2 (L = Salpen(tBu) and Salben(tBu)). These are formed from the reaction of the corresponding L[B(OMe)2]2 with BBr3. They represent a new type of binuclear boron compound. These compounds are active towards the dealkylation of many phosphates. They are also catalytically active with a stoichiometric amount of BBr3 to trimethylphosphate.  相似文献   

2.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

3.
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and M?ssbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.  相似文献   

4.
The first examples of five coordinate aluminum acetylide compounds chelated by a single ligand are reported in this paper. The combination of L(tBu)AlCl (where L=Salen (1), Salpen (2), Salophen (3), Salomphen (4)) with LiCCPh in THF at −78 °C leads to the formation of the four acetylides (5-8), LCCPh. These are extremely moisture sensitive and readily hydrolyze to form aluminum hydroxides and with condensation form compounds of formula [L(tBu)Al]2O. The hydrosylate [Salophen(tBu)Al]2O (9) has been structurally characterized.  相似文献   

5.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

6.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

7.
The compounds [K((mu-N(SiMe3)C(Ph))2CH)(thf)2]infinity 1, [K(mu-N(SiMe3)C(Ph)C(H)C(Ph)NH)L]2 [L = (thf)2 2, tmen 3], [K(mu-NSi(Me)2C(Ph)C(H)C(Ph)N)(thf)3]2 4 and [K(N(H)C(Ph))2CH](thf)0.5 5 have been prepared from K[(N(SiMe3)C(Ph))2CH] and the X-ray structures of 1-4 are reported.  相似文献   

8.
The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento complexes are unstable in solution evolving firstly, through an unexpected formal 4-1 R (Ph, Tol) migration, to the intermediate diphosphanylbutadienyl isomer derivatives [Pt(C(6)F(5))(S)mu-[C(C(6)F(5))doublebondC(PPh(2))C(PPh(2))doublebondC(R)(2)]M(C(6)F(5))(2)] (16, 18) (X-ray, R=Ph, M=Pt) and, finally, to 1-pentafluorophenyl-2,3-bis(diphenylphosphanyl)naphthalene mononuclear complexes (17, 19) by annulation of a phenyl or tolyl group.  相似文献   

9.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

10.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   

11.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

12.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

13.
Reaction of the imidotitanium complexes [Ti(N(t)Bu)(N(2)N(py))(py)](1) and [Ti(N-2,6-C(6)H(3)(i)Pr(2))(N(2)N(py))(py)](2) with phenyl acetylene and tolyl acetylene in toluene gave the corresponding [2+2] cycloaddition products [Ti(N(2)N(py))[kappa(2)-N((t)Bu)CH[double bond]CR]](R = Ph:3, Tol:4) and [Ti(N(2)N(py))[kappa(2)-N(2,6-C(6)H(3)(i)Pr(2))CH[double bond]CR]](R = Ph:5, Tol: 6). Complex 6 is the first example of a key intermediate in the anti-Markovnikov addition of a primary amine to a terminal acetylene which has been structurally characterized by X-ray diffraction.  相似文献   

14.
A series of alkaline earth metallocene complexes carrying the diphenylphosphanocyclopentadienyl ligand, [Ae(L)(x)(η(5)-C(5)H(4)PPh(2))(2)] (Ae = Ca, L = thf, x = 1 (6a); Ae = Ca, L = dme, x = 1 (6b); Ae = Sr, L = thf, x = 1 (7); Ae = Ba, L = thf, x = 1 (8a); Ae = Ba, L = dme, x = 2 (8b)), were prepared by redox transmetallation/protolysis from the free metals, diphenylmercury and diphenylphosphanocyclopentadiene. These complexes were characterised using multinuclear NMR spectroscopy and two by single crystal X-ray diffraction. [Ca(dme)(η(5)-C(5)H(4)PPh(2))(2)] (6b) is a discrete neutral monomeric eight coordinate molecule in which the phosphorus atoms are not coordinated to the calcium ion and the larger barium analogue, ten-coordinate [Ba(dme)(2)(η(5)-C(5)H(4)PPh(2))(2)] (8b), has an extremely bent sandwich structure due to the two dme ligands attached to the metal. Bimetallic complexes, [Ae(thf)(x)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].(solv) (Ae = Ca, L = thf, x = 2, solv = 1.5thf (9); Ae = Sr, L = thf, x = 3, solv = 1.5thf (10); Ae = Ba, L = thf, x = 3, solv = thf (11)) were obtained by reaction of the homometallic complexes with [Pt(cod)(Me)(2)]. The crystal structures of [Ca(thf)(2)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (9), [Sr(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].1.5thf (10) and [Ba(thf)(3)(η(5)-C(5)H(4)PPh(2))(2)Pt(Me)(2)].thf (11) show the eight (calcium) and nine coordinate (strontium and barium) fragments acting as a chelating metalloligand attached to the square planar platinum through the phosphorus donor atoms. The solution chemistry of these bimetallic complexes has been investigated by NMR spectroscopy, electro-spray ionisation mass spectrometry and conductivity experiments which indicate that the bimetallic compounds persist in solution.  相似文献   

15.
Complexes (Salpren(tBu,tBu))Y[N(SiHMe2)2](thf) and (SALEN(tBu,tBu))La[N(SiHMe2)2](thf) (SALEN(tBu,tBu) = Salcyc(tBu,tBu) and Salpren(tBu,tBu)) were prepared from Ln[N(SiHMe2)2]3(thf)2 and H2SALEN(tBu,tBu). The yttrium complex was characterized by X-ray crystallography revealing intrinsic solid-state structural features: the metal centre is displaced by 1.05 angstroms from the [N2O2] least squares plane of a highly bent Salpren(tBu,tBu) ligand (angle(Ph,Ph) dihedral angle of 80.4(1) degrees ) and is coordinated asymmetrically by the silylamide ligand exhibiting one significant Y---(HSi) beta-agostic interaction (Y-N1-Si1, 106.90(9) degrees; Y---Si1, 3.2317(6) angstroms). Complexes (SALEN(tBu,tBu))Ln[N(SiHMe2)2](thf)n (n = 1, Sc; n = 2, Y, La) react with ammonium tetraphenylborate to form the ion pairs [(SALEN(tBu,tBu))Ln(thf)n][BPh4]. The cationisation was proven by X-ray crystal structure analyses of [(Salpren(tBu,tBu))Sc(thf)2][B(C6H5)4].2(thf) and [(Salpren(tBu,tBu))Ln(thf)3][B(C6H5)4].4(thf) (Ln = Y, La), showing an octahedral and pentagonal-bipyramidal coordination geometry, respectively.  相似文献   

16.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions.  相似文献   

17.
The reaction of [[RhCl(C(8)H(14))(2)](2)] (2) with iPr(2)PCH(2)CH(2)C(6)H(5) (L(1)) led, via the isolated dimer [[RhCl(C(8)H(14))(L(1))](2)] (3), to a mixture of three products 4 a-c, of which the dinuclear complex [[RhCl(L(1))(2)](2)] (4 a) was characterized by Xray crystallography. The mixture of 4a-c reacts with CO, ethene, and phenylacetylene to give the square-planar compounds trans-[RhCl(L)(L(1))(2)] (L=CO (5), C(2)H(4) (6), C=CHPh (9)). The corresponding allenylidene(chloro) complex trans-[RhCl(=C=C=CPh(2))(L(1))(2)] (11), obtained from 4 a-c and HC triple bond CC(OH)Ph(2) via trans-[RhCl[=C=CHC(OH)Ph(2)](L(1))(2)] (10), could be converted stepwise to the related hydroxo, cationic aqua, and cationic acetone derivatives 12-14, respectively. Treatment of 2 and [[RhCl(C(2)H(4))(2)](2)] (7) with two equivalents of tBu(2)PCH(2)CH(2)C(6)H(5) (L(2)) gave the dimers [[RhCl(C(8)H(14))(L(2))](2)] (15) and [[RhCl(C(2)H(4))(L(2))](2)] (16), which both react with L(2) in the molar ratio of 1:2 to afford the five-coordinate aryl(hydrido)rhodium(III) complex [RhHCl(C(6)H(4)CH(2)CH(2)PtBu(2)-kappa(2)C,P)(L(2))] (17) by C-H activation. The course of the reactions of 17 with CO, H(2), PhC triple bond CH, HCl, and AgPF(6), leading to the compounds 19-21, 24, and 25 a, respectively, indicate that the coordinatively unsaturated isomer of 17 with the supposed composition [RhCl(L(2))(2)] is the reactive species. Labeling experiments using D(2), DCl, and PhC triple bond CD support this proposal. With either [Rh(C(8)H(14))(eta(6)-L(2)-kappaP]PF(6) or [Rh(C(2)H(4))(eta(6)-L(n)-kappaP]PF(6) (n=1 and 2) as the starting materials, the corresponding halfsandwich-type complexes 27, 28, and 32 were obtained. The nonchelating counterpart of the dihydrido compound 32 with the composition [RhH(2)(PiPr(3))(eta(6)-C(6)H(6))]PF(6) (35) was prepared stepwise from [Rh(C(2)H(4))(PiPr(3))(eta(6)-C(6)H(6))]PF(6) and H(2) in acetone via the tris(solvato) species [RhH(2)(PiPr(3))(acetone)(3)]PF(6) (34) as intermediate. The synthesis of the bis(chelate) complex [Rh(eta(4)-C(8)H(12))(C(6)H(5)OCH(2)CH(2)PtBu(2)-kappa(2)O,P)]BF(4) (39) is also described. Besides 4 a, the compounds 17, 25 a, and 39 have been characterized by Xray crystal structure analysis.  相似文献   

18.
The aminophosphine C(6)H(4)(o-CN)NHPPh(2), 1, containing an electron-withdrawing nitrile group, was prepared from the lithiation of 2-aminobenzonitrile followed by addition of Ph(2)PCl. Lithiation of 1 using (n)BuLi affords the anion [Ph(2)PN(Li)C(6)H(4)(o-CN)(thf)](2), 2. Compound 2 reacts with Ph(2)PCl or MeI to afford C(6)H(4)(o-CN)N=PPh(2)-PPh(2), 3, and [C(6)H(4)(o-CN)N=PPh(2)(CH(3))(LiI)(C(2)H(5)O)](2), 4, respectively. In these products new P-P and P-C bonds have been formed rather than N-P and N-C bonds. The structures of 1-4 have been determined by single-crystal X-ray diffraction analysis, and the synthetic results are discussed in terms of the structural data and NMR spectroscopic studies.  相似文献   

19.
The three-membered silacyclic ring compounds LSi[N(2)(Ph)(2)]tBu (1), LSi[HCN(Ph)(2)]tBu (2) and LSi[C(2)(Ph)(2)]tBu (3) were obtained by the treatment of base stabilized monoalkylsilylenes LSitBu (L = PhC(NtBu)(2)) with PhN=NPh, PhN=CHPh and PhC≡CPh. The reaction of PhN=NPh and PhC≡CPh with LSitBu shows a different reactivity pattern with base stabilized monochlorosilylene LSiCl. The arrangement of the three-membered ring (SiNN) in 1 is the first structurally isolated example of a siladiaziridine compound.  相似文献   

20.
A number of metal complexes containing one of the following ligands: the 1-azaallyl [N(R)C(Ph)C(H)R]- ([triple bond]L-), the 1,3-diazaallyl([triple bond]LL'-) and the isomeric beta-diketiminate [{N(R)C(Ph)]}2CH]- ( identical with LL-) have been prepared (R = SiMe(3)). These are the crystalline compounds H(LL) (2), Na(LL) (3), [Na(LL)(thf)2] (4), Na(L) (6), [Na(mu-LL')]8 (7), [K(mu-L)(eta6-C6H6)]2 (8), [K(mu-LL')(thf)]2 (9), [K(thf)2(mu-LL)](infinity) (10) and [Ni(LL')2] (11). A new synthesis of Na[C(H)R2] (1) involved Hg[C(H)R2]2 and Na/Hg as reagents. The beta-diketimine 2 was obtained from Li(LL) and cyclopentadiene. Under different conditions compounds 3, 6 and 7 were isolated from 1 and benzonitrile, and compounds 8, 9 and 10 from K[C(H)R2] and PhCN. Complex 11 was derived from [Li(LL')]2 and [NiBr(2)(dme)]. The solution obtained from 1 + 2 PhCN in Et2O at ambient temperature was a mixture (5) of 3 (predominantly) and 7. The 1-azaallyl complex 8 has the ligand bound to the metal as the enamide, and this is also probably (NMR) the case for 6. The molecular structures of the crystalline complexes 7, 8 and 11 are presented; that of 10 was published earlier. Compound 7, a cyclooctamer, is particularly interesting, in that each LL'- ligand is bridging via one of its N atoms to two neighbouring sodium ions and is not only N,N'- but also (eta2-C[=]C)-chelating to one of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号