首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A responsive hydrogel microsphere, which is constituted by poly(N-isopropylacrylamide)/poly(ethylene glycol) diacrylate, was fabricated in an aqueous two-phase system based on the polymer–polymer immiscibility. Characteristics of the hydrogel microsphere, such as the particle size and the morphology of freeze-dried or hydrated natural microspheres in water, tetrahydrofuran (THF)/H2O (1:1 in volume) or acetone/H2O (1:1 in volume), were investigated. The results showed that the swelling ratio and the particle size of the hydrogel microspheres were highly dependent on solvent composition. In addition, these characteristics were dramatically reduced when THF or acetone was added into the aqueous media. Scanning electron microscopy and environmental scanning electron microscopy micrographs also visually demonstrated that the regular spherical shape of the microspheres in water turned to irregular in shape when the microspheres were immersed in THF/H2O or acetone/H2O mixtures instead of pure water.  相似文献   

2.
 The electrophoretic mobility of a poly(N-isopropylacrylamide) microgel containing carboxylic groups has been measured as a function of the ionic strength, between 0.1 and 100 mM NaCl, over the temperature range 2545 C. The mobility data obtained have been evaluated using different models, including the porous-sphere, the soft-plate and the soft-sphere models as well as the hard-sphere model developed by Henry and later refined by O'Brien and White. The “porous” or “soft” behaviour is evident at lower temperatures, whereas at higher temperatures none of the models can fully explain the observed behaviour. It is suggested that the discrepancies at higher temperatures can be partly ascribed to the neglect of the relaxation effect in the “soft” models. Received: 30 June 1999/Accepted in revised form: 12 October 1999  相似文献   

3.
采用自由基聚合法在水溶液中制备了温敏水凝胶聚N-异丙基丙烯酰胺(PNIPAAm),以非水溶性药物布洛芬(IBU)为模型药物分子,研究了该水凝胶的温敏性能及与药物IBU的相互作用,考察了不同温度下(25 ℃和37 ℃)IBU在磷酸盐缓冲溶液(PBS,pH=7.4)中的释放行为.研究结果表明:该水凝胶的最低临界溶解温度(L...  相似文献   

4.
The structural features and swelling properties of responsive hydrogel films based on poly(N-isopropylacrylamide) copolymers with a photo-cross-linkable benzophenone unit were investigated by surface plasmon resonance, optical waveguide mode spectroscopy, and atomic force microscopy. The temperature-dependent swelling behavior was studied with respect to the chemical composition of the hydrogel polymers containing either sodium methacrylate or methacrylic acid moieties. In the sodium methacrylate system, a refractive index gradient was found that was not present in the free acid gel. This refractive index gradient, perpendicular to the swollen hydrogel film surface, could be analyzed in detail by application of the reversed Wentzel-Kramers-Brillouin (WKB) approximation to the optical data. This novel approach to analyzing thin-film gradients with the WKB method presents a powerful tool for the characterization of inhomogeneous hydrogels, which would otherwise be very difficult to capture experimentally. In AFM images of the hydrogel layers, a macroscopic pore structure was observed that depended on the polymer composition as well as on the swelling history. This pore structure apparently prevents the often-observed skin barrier effect and leads to a quickly responding hydrogel.  相似文献   

5.
6.
On the structure of poly(N-isopropylacrylamide) microgel particles   总被引:3,自引:0,他引:3  
This investigation presents a study of the internal structure of poly(NIPAM/xBA) microgel particles (NIPAM and BA are N-isopropylacrylamide and N,N'-methylene bisacrylamide, respectively). In this study, x is the wt % of BA used during microgel synthesis. Two values of x were used to prepare the microgels, 1 and 10. The microgel dispersions were investigated using photon correlation spectroscopy (PCS) and small-angle neutron scattering (SANS). These measurements were made as a function of temperature in the range 30-50 degrees C. Scattering maxima were observed for the microgels when the dispersion temperatures were less than their volume phase transition temperatures. The SANS data were fitted using a model which consisted of Porod and Ornstein-Zernike form factors. The analysis showed that the macroscopic hydrodynamic diameter of the microgel particles and the submicroscopic mesh size of the network are linearly related. This is the first study to demonstrate affine swelling for poly(NIPAM/xBA) microgels. Furthermore, the mesh size does not appear to be strongly affected by x. The data suggest that the swollen particles have a mostly homogeneous structure, although evidence for a thin, low segment density shell is presented. The study confirms that poly(NIPAM/xBA) microgel particles have a core-shell structure. The shell has an average thickness of approximately 20 nm for poly(NIPAM/1BA) particles which appears to be independent of temperature over the range studied. The analysis suggests that the particles contained approximately 50 vol % water at 50 degrees C. The molar mass of the poly(NIPAM/1BA) microgel particles was estimated as 6 x 10(9) g mol(-1).  相似文献   

7.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

8.
Poly (N-isopropylacrylamide) microgel particles are found to form colloidal crystals similar to those occurring in typical hard-sphere colloids like poly(methylmethacrylate) beads. Samples made of particles with different cross-linker concentrations are investigated and their deswelling ratio is determined using dynamic light scattering. Small-angle neutron scattering data are also presented and analysed in terms of a face-centred-cubic crystal structure. The characteristic length, a, of the elementary cell is found to be 535 ± 16 and 495 ± 15 nm for the two systems investigated. This leads to particle radii of 189 ± 6 and 175 ± 5 nm, respectively. These values compare well to the radii determined using several different methods. Received: 26 July 1999/Accepted: 21 March 2000  相似文献   

9.
A photoresponsive hydrogel was prepared by radical copolymerization of N-isopropylacrylamide, a vinyl monomer having a spirobenzopyran residue and cross-linker. By the observation of photoresponsive shrinking and the conductance change, it was confirmed that the hydrogel in an acidic condition exhibited drastic and rapid volume shrinkage and proton dissociation when it was irradiated with blue light. Further, to examine its application to the mass transfer control, we prepared a photo- and thermoresponsive gate membrane by introducing this photoresponsive hydrogel to the surface of a porous membrane. As the first demonstration of the photocontrol of membrane permeation for liquid, it was observed that its permeability for 1 mM HCl aqueous solution increased by 2 times in response to the blue light irradiation, and this photoresponse of the permeability was confirmed to be repeatable.  相似文献   

10.
Poly(N-isopropylacrylamide) (PNIPAM)-carrying particles were characterized as thermosensitive Pickering emulsifiers. Emulsions were prepared from various oils, such as heptane, hexadecane, trichloroethylene, and toluene, with PNIPAM-carrying particles. PNIPAM-carrying particles preferentially formed oil-in-water (O/W)-type emulsions with a variety of oils. All the emulsions stabilized by PNIPAM-carrying particles were stable for more than 3 months as long as they were stored at room temperature. However, when the emulsions were heated from room temperature to 40 degrees C, at which point the PNIPAM layer caused a coil-to-globule transition, phase separation occurred. Thus, by using thermosensitive PNIPAM-carrying particles as emulsifiers, the stability of the Pickering emulsions could be controlled by a slight change in temperature.  相似文献   

11.
The feasibility of temperature-swing adsorption of heavy metals on a thermosensitive N-isopropylacrylamide (NIPA) hydrogel was examined. We have proposed a novel temperature-swing solid-phase extraction (TS-SPE) technique. First, a metal ion in an aqueous solution is complexed with an extractant. Subsequently, the metal-extractant complexes (or micelles) are adsorbed onto the NIPA hydrogel through a hydrophobic interaction above the lower critical solution temperature (LCST). Finally, the metal-extractant complexes are desorbed from the NIPA hydrogel after it is cooled below the LCST. In a model system consisting of Cu(II) ions, sodium n-dodecylbenzenesulfonate (SDBS), and NIPA hydrogel, the proposed TS-SPE technique has been successfully conducted. The following observations can be made: the amount of adsorbed Cu(II) ions increases with the increase in temperature, the maximum adsorption is attained at a temperature above the LCST, and the hydrogel adsorbs and desorbs Cu(II) ions reversibly due to the temperature-swing between 10 and 40 degrees C. The LCSTs of poly(NIPA) in aqueous SDBS solutions with/without CuCl2 and the surface tensions of their solutions suggest that the hydrophobicity of the complex Cu(DBS)2 is greater than the hydrophobicities of SDBS and DBS. In addition to the separation of heavy metals, TS-SPE is potentially applicable to cases such as the separation of biological molecules by means of metal-ion affinity.  相似文献   

12.
 The temperature dependence of the dimensions of poly(N-isopropylacrylamide) (PNIPAM) adsorbed on two different colloidal silica particles was studied with dynamic light scattering. The hydrodynamic diameter was measured when the temperature was varied stepwise from 10 to 60 °C. PNIPAM molecules free in solution undergo a conformational transition at the θ temperature. We have found that PNIPAM adsorbed onto silica particles also undergoes a transition below the θ temperature. When a small amount of polymer was adsorbed the coil-to-globule transition at the θ temperature did not occur. Potentiometric titrations showed that the surface charge of the silica particles was not affected by the polymer adsorption. Sodium dodecyl sulfate (SDS) (100–1200 mg/l) was added to improve the stability. The particles with a higher zeta potential required a smaller addition of SDS to prevent coagulation compared to the particles with a smaller surface potential. For low additions of SDS the transition curves of adsorbed PNIPAM were unaffected. For larger additions of SDS the collapse of PNIPAM was shifted to higher temperatures. When as much as 1200 mg/l SDS was added, two regions with weak transitions were observed before the collapse. It was also observed that the presence of SDS results in a smaller adsorption of PNIPAM onto the particles. The addition of SDS strongly increased the magnitude of the electrophoretic mobility of the polymer–particle unit. From the electrophoretic measurements an electrokinetic layer thickness was calculated and it was found to be smaller than the corresponding hydrodynamic layer thickness, as obtained by dynamic light scattering. Received: 14 December 1999/In revised form: 22 February 2000/Accepted: 6 March 2000  相似文献   

13.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

14.
Thermo-responsive hydrogels of poly(N-isopropylacrylamide) (PNIPAm) were prepared by fontal polymerization and investigated as a temperature-triggered delivery device for the model drug aspirin. The influence of relative amount of reactant components on the feature of the polymerization front was studied. Furthermore, aspirin was loaded into hydrogels prepared by fontal polymerization method and classical polymerization, respectively, and its release characteristics were determined under different temperature conditions (25 °C and 37 °C). The drug storages and kinetic parameters for two hydrogels indicated that drug-loading capacity and drug release of frontal polymerization (FP) hydrogel were improved as compared with the classical polymerization (CP) one. Scanning electronic microscope and differential scanning calorimetry (DSC) results could account for these improvements in drug delivery for FP hydrogel. The above results indicate that FP can be an alternative method for the preparation of PNIPAm hydrogels used as drug delivery devices with less time consuming and easier protocols.  相似文献   

15.
Investigation of the thermo-reversible properties of different poly(N-isopropyl acrylamide) samples, including microgels and block copolymers, with a combination of methods such as electron microscopy, dynamic light scattering, analytical ultracentrifugation, electrophoresis and ultrasound resonator technology allows comprehensive characterisation of the phase transition. By the combination of methods, it was possible to show that the precipitated polymer phase contains at 40 °C between 40 and 50 vol.% of water. Besides free bulk water, there is also bound water that strongly adheres to the N-isopropyl acrylamide units (about 25 vol.%). Ultrasound resonator technology, which is a non-sizing characterisation method, revealed for the microgel particles two more temperatures (at about 35 and between 40 °C and 50 °C depending on the chemical nature) where characteristic changes in the ultrasound attenuation take place. Moreover, the experimental data suggest that the phase transition temperature is related to surface charge density of the precipitated particles.  相似文献   

16.
Poly(vinyl alcohol) (PVA) was used as a steric stabilizer for the dispersion polymerization of cross-linked poly(N-isopropylacrylamide) (PNIPAM) in water. A series of reactions were carried out using PVA of varying molecular weight and degree of hydrolysis. Under appropriate conditions, PNIPAM particles of uniform and controllable size were produced using PVA as the stabilizer. The colloidal stability was investigated by measuring changes in particle size with temperature in aqueous suspensions of varying ionic strength. For comparison, parallel colloidal stability measurements were conducted on PNIPAM particles synthesized with low-molecular-weight ionic surfactants. PVA provides colloidal stability over a wide range of temperature and ionic strength, whereas particles produced with ionic surfactants flocculate in moderate ionic strength solutions upon collapse of the hydrogel as the temperature is increased. Experimental results and theoretical consideration indicate that sterically stabilized PNIPAM particles resulted from the grafting of PVA to the PNIPAM particle surface. The enhanced colloidal stability afforded by PVA allows the temperature-responsive PNIPAM particles to be used under physiological conditions where electrostatic stability is ineffective.  相似文献   

17.
The thermoresponsive behavior of poly-(N-isopropylacrylamide) (PNiPAM) microgels embedded in a covalently cross-linked polyacrylamide hydrogel matrix was investigated using ultraviolet-visible (UV-vis) spectroscopy, small-angle neutron scattering (SANS), and confocal laser scanning microscopy. The hydrogel synthesis was performed at two different temperatures, below and above the volume phase transition temperature of PNiPAM, resulting in highly swollen or fully collapsed PNiPAM microgel particles during the incorporation step. UV-vis spectroscopy experiments verify that the incorporation of thermosensitive microgels leads to temperature-sensitive optical properties of the composite materials. SANS measurements at different temperatures show that the thermosensitive swelling behavior of the PNiPAM microgels is fully retained in the composite material. Volume and structure criteria of the embedded microgel particles are compared to those of the free microgels in acrylamide solution. To visualize the temperature responsive behavior of larger PNiPAM particles, confocal fluorescence microscopy images of PNiPAM beads, of 40-microm size, were taken at two different temperatures. The micrographs also demonstrate the retained temperature sensitivity of the embedded microgels.  相似文献   

18.
The interaction of cetyl-trimethylammonium bromide (CTAB) with swollen and collapsed poly(N-isopropylacrylamide) (pNIPAM) monodisperse nanogel particles was investigated by electrophoretic mobility, dynamic light scattering, and potentiometric surfactant activity measurements. The surfactant binds to the nanogel particles as monomers in the whole CTAB concentration range and binds in the form of surfactant aggregates as well above a critical concentration (cac) in both the swollen and collapsed state of the pNIPAM. The swollen particle system is a thermodynamically stable solution. The collapsed nanogel particle system is an electrically stabilized colloid dispersion, which coagulates when the particles are near the electrically neutral state. An analytically undetectably small amount of surfactant binding (5 × 10(-7) mol/g of pNIPAM) leads to a dramatic effect on the stability of the pNIPAM nanogel system. The electrokinetic potential versus surfactant concentration functions unexpectedly strongly depend upon the temperature around the lower critical solution temperature (LCST) of the polymer, which was interpreted by the change of the polymer segment density in the surface layer of the collapsing nanogel particles.  相似文献   

19.
Monodisperse microgel latex with homogeneous cross-link density distribution within the particles was prepared by feeding the monomer and cross-linker into the reaction mixture in a regulated way during the polymerization. To determine the appropriate monomer feeding parameters, the kinetics of the particle formation was investigated by HPLC. The swelling and optical characteristics of the prepared homogenously cross-linked microgel particles were compared to the properties of inhomogenously cross-linked microgels prepared by the normal precipitation polymerization method. The distribution of the cross-link density within the particles inserts a great influence on the characteristics of the system. The degree of swelling of the homogeneous particles is significantly higher than that of the heterogeneous microgel particles. Furthermore, at room temperature the pNIPAm latex containing the homogeneously cross-linked particles is transparent, while the heterogeneously cross-linked particles form a highly turbid system at the same 0.1 wt% concentration.  相似文献   

20.
The use of microgel particles for controlled uptake and release of active species has great potential. The compatibility of microgel particles with their environment and the functionality of the particles can be achieved by modification of the core microgel through the addition of a shell. In this work, core-shell microgel particles, with a pH-responsive core (polyvinylpyridine) and a temperature-responsive shell (poly-N-isopropylacrylamide), have been prepared and characterized. The uptake and release of an anionic surfactant from the microgels has been investigated as a function of solution pH and temperature. The results indicate that electrostatic attraction between the anionic surfactant and the cationically charged core of the microgel particles is the dominant mechanism for absorption of the surfactant into the core-shell microgel particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号