首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chapman–Enskog expansion when applied to a gas of spherical molecules yields formal expressions for the stress deviator P and energy-flux vector q, PP (1)2 P (2)+…, qq (1)2 q (2)+…. The Burnett terms P (2), q (2) depend on 11 coefficients ω i , 1≦i≦6, θ&; i , 1≦i≦ 5. This paper shows that ω343= 0.  相似文献   

2.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

3.
4.
Let Ω be a bounded open domain in R n , gRR a non-decreasing continuous function such that g(0)=0 and h ε L loc 1 (R+; L 2(Ω)). Under suitable assumptions on g and h, the rate of decay of the difference of two solutions is studied for some abstract evolution equations of the general form u ′′ + Lu + g(u ) = h(t,x) as t → + ∞. The results, obtained by use of differential inequalities, can be applied to the case of the semilinear wave equation $$u_u - \Delta u + g{\text{(}}u_t {\text{) = }}h{\text{ in }}R^ + \times \Omega ,{\text{ }}u = {\text{0 on }}R^ + \times \partial \Omega$$ in R +×Ω, u=0 on R +×?Ω. For instance if \(g(s) = c\left| s \right|^{p - 1} s + d\left| s \right|^{q - 1} s\) with c, d>0 and 1 < p≦q, (n?2)q≦n+2, then if \(h \in L^\infty (R + ;L^2 (\Omega ))\) , all solutions are bounded in the energy space for t≧0 and if u, v are two such solutions, the energy norm of u(t) ? v(t) decays like t ?1/p?1 as t → + ∞.  相似文献   

5.
The existence conditions of zero electric fields E and zero electric displacements D are studied for bulk acoustic waves in piezoelectric crystals. General equations are derived for lines of zero electric fields, E(m)=0, and for specific points m 0 of vanishing electric displacements, D(m 0)=0, on the unit sphere of propagation directions m 2=1. The obtained equations are solved for a series of examples of particular crystal symmetry. It is shown that the vectors D α (m) being generally orthogonal to the wave normal m are characterized by definite orientational singularities in the vicinity of m 0 and can be described by the Poincaré indices n=0, ±1 or ±2. The algebraic expressions for the indices n are found both for unrestricted anisotropy and for a series of particular cases.  相似文献   

6.
Yongxin Yuan  Hao Liu 《Meccanica》2013,48(9):2245-2253
The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let M a SR n×n be the analytical mass matrix, and Λ=diag{λ 1,…,λ p }∈C p×p , X=[x 1,…,x p ]∈C n×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $ , $x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $ for j=1,…,l, and λ k R, x k R n for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that M a 2+DXΛ+KX=0. Problem 2: Let D a ,K a SR n×n be the analytical damping and stiffness matrices. Find $(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$ such that $\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$ , where S E is the solution set of Problem 1 and ∥?∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.  相似文献   

7.
We consider as in Part I a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and?l 3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is any portion of withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements $$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$ where $\gamma _{\alpha \beta }$ (η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder and?(γ 0) is contained in a generatrix ofS. We show that, if the applied body force density isO(? 2) with respect to?, the fieldu(?)=(u i (?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges as?→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts ?1 1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., $$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$ for allη=(η i ) ∈V F (ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$ are the components of the linearized change of curvature tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_\alpha ^\beta$ are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.  相似文献   

8.
In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that emerges in the minimization problem $$\inf_{\mathcal{K}}\int_{\varOmega}|\nabla \textbf {v}|^2, \quad\varOmega\subset \mathbb {R}^2 $$ as the Lagrange multiplier corresponding to the incompressibility constraint det?v=1 a.e. in Ω. Our method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain Ω ?=u(Ω). This allows to construct a convex function ψ, defined in the image domain, such that the measure of the normal mapping of ψ controls the L 2 norm of the pressure. As a by-product we conclude that $\textbf {u}\in C^{\frac{1}{2}}_{\textrm {loc}}(\varOmega)$ if the dual pressure (introduced in Karakhanyan, Manuscr. Math. 138:463, 2012) is nonnegative.  相似文献   

9.
We consider a family of linearly elastic shells with thickness 2?, clamped along their entire lateral face, all having the same middle surfaceS=φ() ?R 3, whereω ?R 2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφl 3 ( $\overline \omega$ ;R 3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS. We show that, if the applied body force density isO(1) with respect to?, the fieldtu(?)=(u i(?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges inH 1(Ω)×H 1(Ω)×L 2(Ω) as?→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε ?1 1 u dx 3, which belongs to the space $$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$ satisfies the (scaled) two-dimensional equations of a “membrane shell” viz., $$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$ for allη=(η i) εV M(ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$ are the components of the linearized change of metric tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_{\alpha \beta }$ are the components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.  相似文献   

10.
Recently, Férec et al. (2009a) proposed a model for nondilute rod-like suspensions, where particle interactions are taking into account via a micromechanical approach. The derived governing equation used the well-known second- and fourth-order orientation tensors (a 2 and a 4 ) and novel second- and fourth-order interaction tensors (b 2 and b 4 ). To completely close the model, it is necessary to express a 4 , b 2 , and b 4 in terms of a 2 . This paper gives the general framework to elaborate these new relations. Firstly, approximations for b 2 are developed based on linear combinations of a 2 and a 4 . Moreover, a new closure approximation is also derived for b 4 , based on the orthotropic fitted closure approach. Unknown parameters are determined by a least-square fitting technique with assumed exact solutions constructed from the probability distribution function (PDF). As numerical solutions for the PDF are difficult to obtain given the nonlinearity of the problem, a combination of steady state solutions is used to generate PDF designed to cover uniformly the entire domain of possible orientations. All these proposed approximations are tested against the particle-based simulations in a variety of flow fields. Improvements of the different approximations are observed, and the couple iORW-CO4P3 gives efficient results.  相似文献   

11.
In this paper we examine a class of Eulerian time discretizations for a monotone cyclic feedback system with a time delay; see Mallet-Paret and Sell (1996a, 1996b) for background information. We construct an integer-valued function V for the discrete-time problem. The Main Theorem shows that V is a Lyapunov function, that is, V(x n+1)≤V(x n ) along a solution {x n } n=0, where the time steps can be relatively large.  相似文献   

12.
13.
In finite elasticity, the Mooney–Rivlin material model for the Cauchy stress tensor T in terms of the left Cauchy–Green strain tensor B is given by $$T = -pI + s_1 B + s_2 B^{-1},$$ where p is the pressure and s 1, s 2 are two material constants. It is usually assumed that s 1 >?0 and s 2?≤ 0, known as E-inequalities, based on the assumption that the free energy function be positive definite for any deformation. In this note, we shall relax this assumption and with a thermodynamic stability analysis, prove that s 2 need not be negative so that some typical behavior of materials under contraction can also be modeled.  相似文献   

14.
We formulate a new criterion for regularity of a suitable weak solution v to the Navier–Stokes equations at the space-time point (x 0, t 0). The criterion imposes a Serrin-type integrability condition on v only in a backward neighbourhood of (x 0, t 0), intersected with the exterior of a certain space-time paraboloid with vertex at point (x 0, t 0). We make no special assumptions on the solution in the interior of the paraboloid.  相似文献   

15.
Let ? be a body immersed in a Navier-Stokes liquid ? that fills the whole space. Assume that ? rotates with prescribed constant angular velocity ω. We show that if the magnitude of ω is not “too large”, there exists one and only one corresponding steady motion of ? such that the velocity field v(x) and its gradient grad?v(x) decay like |x|?1 and |x|?2, respectively. Moreover, the pressure field p(x) and its gradient grad?p(x) decay like |x|?2 and |x|?3, respectively. These solutions are “physically reasonable” in the sense of Finn. In particular, they are unique and satisfy the energy equation. This result is relevant to several applications, including sedimentation of heavy particles in a viscous liquid.  相似文献   

16.
Consider a homogeneous, isotropic, hyperelastic body occupying the region ${A = \{{\bf x}\in\mathbb{R}^{n}\, : \,a <\,|{\bf x} |\,< b \}}$ in its reference state and subject to radially symmetric displacement, or mixed displacement/traction, boundary conditions. In Part I (Sivaloganathan and Spector in Arch Ration Mech Anal, 2009, in press) the authors restricted their attention to incompressible materials. For a large-class of polyconvex constitutive relations that grow sufficiently rapidly at infinity it was shown that to each nonradial isochoric deformation of A there corresponds a radial isochoric deformation that has strictly less elastic energy than the given deformation. In this paper that analysis is further developed and extended to the compressible case. The key ingredient is a new radial-symmetrisation procedure that is appropriate for problems where the symmetrised mapping must be one-to-one in order to prevent interpenetration of matter. For the pure displacement boundary-value problem, the radial symmetrisation of an orientation-preserving diffeomorphism uA → A* between spherical shells A and A* is the deformation $${\bf u}^{\rm rad}({\bf x})=\frac{r(R)}{R}{\bf x}, \quad R=|{\bf x}|,\qquad\qquad\qquad\qquad(0.1)$$ that maps each sphere ${S_R\subset\,A}$ , of radius R > 0, centred at the origin into another such sphere ${S_r={\bf u}^{\rm rad}(S_R)\subset\,A^*}$ that encloses the same volume as u(S R ). Since the volumes enclosed by the surfaces u(S R ) and u rad (S R ) are equal, the classical isoperimetric inequality implies that ${{{\rm Area}( {\bf u}^{\rm rad} (S_R))\leqq {\rm Area}({\bf u} (S_R))}}$ . The equality of the enclosed volumes together with this reduction in surface area is then shown to give rise to a reduction in total energy for many of the constitutive relations used in nonlinear elasticity. These results are also extended to classes of Sobolev deformations and applied to prove that the radially symmetric solutions to these boundary-value problems are local or global energy minimisers in various classes of (possibly nonsymmetric) deformations of a thick spherical shell.  相似文献   

17.
ThePekeris differential operator is defined by $$Au = - c^2 (x_n )\rho (x_n )\nabla \cdot \left( {\frac{1}{{\rho (x_n )}}\nabla u} \right),$$ wherex=(x 1,x 2,...x n )∈R n ,?=(?/?x 1, ?/?x 2,...?/?x n ), and the functionsc(x n),σ(x n) satisfy $$c(x_n ) = \left\{ \begin{gathered} c_1 , 0 \leqq x_n< h, \hfill \\ c_2 , x_n \geqq h, \hfill \\ \end{gathered} \right.$$ and $$\rho (x_n ) = \left\{ \begin{gathered} \rho _1 , 0 \leqq x_n< h, \hfill \\ \rho _2 , x_n \geqq h, \hfill \\ \end{gathered} \right.$$ wherec 1,c 2,? 1,? 2, andh are positive constants. The operator arises in the study of acoustic wave propagation in a layer of water having sound speedc 1 and density? 1 which overlays a bottom having sound speedc 2 and density? 2. In this paper it is shown that the operatorA, acting on a class of functions u (x) which are defined for xn≧0 and vanish for xn=0, defines a selfadjoint operator on the Hilbert space whereR + n ={xR n :x n >0} anddx =dx 1 dx 2...dx n denotes Lebesgue measure in R + n . The spectral family ofA is constructed and the spectrum is shown to be continuous. Moreover an eigenfunction expansion for A is given in terms of a family of improper eigenfunctions. Whenc 1c 2 each eigenfunction can be interpreted as a plane wave plus a reflected wave. When c1< c2, additional eigen-functions arise which can be interpreted as plane waves that are trapped in the layer 0n h by total reflection at the interface xn=h.  相似文献   

18.
Let A be a second order tensor in a finite dimensional space. In this work we determine the gradient of the principal invariants of A and obtain some trace and determinant identities using only some standard rigorous statements concerning Grassmann calculus. We recover some of the results of Dui et al. (J. Elast. 75:193–196, 2004) and of Truesdell and Noll (The Non-linear Field Theories of Mechanics, Springer, Berlin, 2002) and solve an old problem proposed in SIAM Review concerning a determinant identity from a new perspective in a concise and simple manner.  相似文献   

19.
Yongxin Yuan  Hao Liu 《Meccanica》2012,47(3):699-706
Finite element model updating is a procedure to minimize the differences between analytical and experimental results and can be mathematically reduced to solving the following problem. Problem P: Let M a SR n×n and K a SR n×n be the analytical mass and stiffness matrices and Λ=diag{λ 1,…,λ p }∈R p×p and X=[x 1,…,x p ]∈R n×p be the measured eigenvalue and eigenvector matrices, respectively. Find \((\hat{M}, \hat{K}) \in \mathcal{S}_{MK}\) such that \(\| \hat{M}-M_{a} \|^{2}+\| \hat{K}-K_{a}\|^{2}= \min_{(M,K) \in {\mathcal{S}}_{MK}} (\| M-M_{a} \|^{2}+\|K-K_{a}\|^{2})\), where \(\mathcal{S}_{MK}=\{(M,K)| X^{T}MX=I_{p}, MX \varLambda=K X \}\) and ∥?∥ is the Frobenius norm. This paper presents an iterative method to solve Problem P. By the method, the optimal approximation solution \((\hat{M}, \hat{K})\) of Problem P can be obtained within finite iteration steps in the absence of roundoff errors by choosing a special kind of initial matrix pair. A numerical example shows that the introduced iterative algorithm is quite efficient.  相似文献   

20.
Compatibility equations of elasticity are almost 150 years old. Interestingly, they do not seem to have been rigorously studied, to date, for non-simply-connected bodies. In this paper we derive necessary and sufficient compatibility equations of nonlinear elasticity for arbitrary non-simply-connected bodies when the ambient space is Euclidean. For a non-simply-connected body, a measure of strain may not be compatible, even if the standard compatibility equations (“bulk” compatibility equations) are satisfied. It turns out that there may be topological obstructions to compatibility; this paper aims to understand them for both deformation gradient F and the right Cauchy-Green strain C = F T F. We show that the necessary and sufficient conditions for compatibility of deformation gradient F are the vanishing of its exterior derivative and all its periods, that is, its integral over generators of the first homology group of the material manifold. We will show that not every non-null-homotopic path requires supplementary compatibility equations for F and linearized strain e. We then find both necessary and sufficient compatibility conditions for the right Cauchy-Green strain tensor C for arbitrary non-simply-connected bodies when the material and ambient space manifolds have the same dimensions. We discuss the well-known necessary compatibility equations in the linearized setting and the Cesàro-Volterra path integral. We then obtain the sufficient conditions of compatibility for the linearized strain when the body is not simply-connected. To summarize, the question of compatibility reduces to two issues: i) an integrability condition, which is d(F dX) = 0 for the deformation gradient and a curvature vanishing condition for C, and ii) a topological condition. For F dx this is a homological condition because the equation one is trying to solve takes the form dφ = F dX. For C, however, parallel transport is involved, which means that one needs to solve an equation of the form dR/ ds = RK, where R takes values in the orthogonal group. This is, therefore, a question about an orthogonal representation of the fundamental group, which, as the orthogonal group is not commutative, cannot, in general, be reduced to a homological question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号