首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

2.
This paper reports on efficient generation of cw laser radiation at 0.9 and 1.3 μm in different neodymium doped laser hosts. The thermal, mechanical and optical properties as well as the laser performance of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:GdVO4 are studied in numerical simulations as well as in experimental investigations. For example an output power of more than 4.0 W is generated in Nd:YVO4 at the 914 nm 4F3/24I9/2 transition using a pump power of 19 W. In Nd:GdVO4 more than 6.0 W are obtained at the 1342 nm 4F3/24I13/2 laser transition by using a pump power of 19.3 W. The spatial beam quality of both lasers is diffraction limited with an M2 value of less than 1.1. PACS  42.70.Hj; 42.55.Xi; 42.60.Pk  相似文献   

3.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

4.
N. Pavel 《Laser Physics》2010,20(1):215-221
Continuous-wave (CW) simultaneous laser emission on the 0.9-μm 4 F 3/24 I 9/2 transition and the 4 F 3/24 I 11/2 transition at 1.06 μm is obtained in Nd-based laser crystals of thin-disk geometry and using a multi-pass pumping scheme. A Nd:Y3Al5O12 (Nd:YAG) thin disk emitted simultaneous laser radiation at 946 and 1064 nm with 5.1 W output power, and Nd:YVO4 and Nd:GdVO4 thin-disk lasers with more than 3 W output power at 0.91 and 1.06 μm were realized. The ratio between the output power at one of the wavelengths and the total output power could be varied by the laser resonator design. An intracavity frequency-doubled Nd:YVO4 thin-disk laser with alternate green at 532 nm and “deep-blue” at 457 nm generation of high average output powers is demonstrated.  相似文献   

5.
A continuous-wave, diode-pumped Nd:GdVO4 thin disk laser with simultaneous dual-wavelength emission at the 912 nm 4 F 3/24 I 9/2 quasi-three-level transition and the 1063 nm 4 F 3/24 I 11/2 four-level transition is demonstrated and analyzed. Output powers of 1.7 W at 912 nm and of 1.6 W at 1063 nm were achieved simultaneously from a 0.3-at.%, 300-μm thick Nd:GdVO4 crystal that was multi-pass excited with 26.8 W of available diode pump power. Second harmonic generation to 456 nm with LiB3O5 yielded 0.96 W in 912 nm single-wavelength operation and 0.73 W in 912 nm/1063 nm dual-wavelength operation. PACS 42.55.Rz; 42.60.By; 42.65.Ky  相似文献   

6.
The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.  相似文献   

7.
We have carried out a detailed spectroscopic characterization of Nd: GdVO4, a new laser crystal with high effective absorption and emission cross sections. The accidental degeneracy of the upper4 F 3/2 laser level decreases the number of emission lines and creates -together with the anisotropic crystal field - high emission cross sections (7.6 × 10–19 cm2 at 1.06 µm and 300 K). In addition, the lines are strongly homogeneously broadened (1.6 nm for the 808.4 nm diode-laser pump transition). The temperature dependences of lifetime, linewidths, and cross sections have been determined. Slope efficiencies up to 57% with respect to the absorbed diode-laser pump power and output powers up to 0.8 W have been achieved at 1.06 µm from a 2 mm long crystal. Intracavity second-harmonic generation, using a KTP crystal, is demonstrated.  相似文献   

8.
We have demonstrated the stable mode-locked Nd:GdVO4 laser operating on the 4F3/2-4I9/2 transition at 912 nm. With a four-mirror-folded cavity and a semiconductor saturable absorber mirror for passive mode-locking, we have gained 6.5 ps laser pulses at a repetition rate of 178 MHz. The laser is diode-end-pumped, and the total output power from the out coupler is 128 mw at an incident pump power of 19.7 W.  相似文献   

9.
3+ ions in CaWO4, LaSc3(BO3)4, and YLiF4 crystals are presented. The spectra were measured by a continuous-wave pump and probe technique. It is shown that ESA is a negligible loss mechanism in cw lasers emitting at 1.06 μm. In contrast, the effective emission cross sections in Nd:CaWO4 and Nd:LaSc3(BO3)4 around 1.35 μm are considerably diminished. Received: 8 May 1998/Revised version: 7 September 1998  相似文献   

10.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

11.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

12.
4 I13/2 and 4I11/2 of erbium is measured in a fluorozirconate fiber in the wavelength range 780–840 nm. Using a pump- and probe-beam technique and choosing the pump wavelength such that the perturbation by pump ESA is minimized in the measurement, it is possible to determine the effective ESA cross sections, despite the fact that the excitation is distributed among two metastable levels. The derived ESA cross sections at 793 nm of 1.4×10-21 cm2 from the 4I13/2 level and less than 0.1×10-21 cm2 from the 4I11/2 level are in reasonable agreement with former results obtained from a rate-equation simulation of the erbium 3-μm laser. The corresponding ESA spectrum under 3-μm lasing conditions is derived. At the strongest ground-state absorption around 799 nm, decreasing ESA from the 4I13/2 level is compensated by increasing ESA from the 4I11/2 level, i.e., ESA losses cannot be avoided when pumping around 800 nm. This result is of relevance for possible high-power diode pumping of an erbium 3-μm double-clad fiber laser. Received: 20 January 1998  相似文献   

13.
A compact and efficient diode-pumped intracavity-frequency-doubled Nd:GdVO4/KTP green laser is demonstrated with a flat–flat cavity design. With a 1.3 at. % Nd3+-doped GdVO4 crystal and pumped at the weak-absorption peak of 806 nm, the second-harmonic output power at 532 nm was measured to be 1.95 W at an incident pump power of 8.4 W, corresponding to an optical conversion efficiency of 23.2%. The output characteristic at the fundamental wavelength of 1.063 μm was investigated with two different pump wavelengths. More than 4.5-W output power was generated when the laser was pumped at 806.2 nm. Received: 26 July 2000 / Revised version: 18 September 2000 / Published online: 7 February 2001  相似文献   

14.
Excited state absorption (ESA) of Tm3+ ions in YVO4 crystal was measured using a pump and probe technique. The measurements have been performed in the wide spectral range in both the near infrared and visible region between 6000 cm-1 (NIR) and 24000 cm-1 (VIS). ESA absorption cross section spectra have been calculated for transitions from the 3 F 4 and 3 H 4 states of Tm3+ and compared to those evaluated experimentally. The excited state absorption in YVO4:Tm3+ should not influence the laser operation related to the 3F43H6 transition around 1900 nm, but it will be a significant loss factor for a potential laser action associated with the 3H43F4 transition around 1.48 μm. PACS 42.55.Xi; 42.62.Fi  相似文献   

15.
With a fiber coupled laser diode array as the pump source, Nd-doped Lu2SiO5 (Nd:LSO) crystal lasers at 4F3/24I11/2 and 4F3/24I13/2 transitions were demonstrated. The active Q-switched dual-wavelength lasers at about 1.08 μm, as well as continuous-wave (CW) and active Q-switched lasers at 1357 nm are reported for the first time, to the best of our knowledge. Considering the small emission cross-sections and long fluorescence lifetime, this material possesses large energy storage ability and excellent Q-switched properties. The special emission wavelength at 1357 nm will have promising applications to be used in many fields, such as THz generation, pumping of Cr3+:LiSAF, repumping of strontium optical clock, laser Doppler velocimeter and distributed fiber sensor.  相似文献   

16.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

17.
Intracavity sum-frequency mixing of 1.06 μm and 532 nm in YCa4O(BO3)3 (YCOB) crystals cut for different type-I phase-matching directions of (θ,ϕ)=(106°,77.2°), (111°, 79.6°) and (65°, 82.8°) was investigated in a compact diode-end-pumped acousto-optical Q-switched Nd:YVO4/KTP laser formed with a three-mirror folded resonator. The maximum 355-nm average output power of 124 mW was obtained in the phase-matching direction of (106°, 77.2°) with a pump-to-ultraviolet conversion efficiency of 3.3% at the repetition frequency of 20 kHz. Received: 17 September 2001 / Revised version: 27 November 2001 / Published online: 17 January 2002  相似文献   

18.
4 )2 single crystals doped with Er3+ have been grown by the flux top-seeded-solution growth method. The crystallographic structure of the lattice has been refined, being the lattice constants a=10.652(4), b=10.374(6), c=7.582(2) Å, β=130.80(2)°. The refractive index dispersion of the host has been measured in the 350–1500 nm range. The optical absorption and photoluminescence properties of Er3+ have been characterised in the 5–300 K temperature range. At 5 K, the absorption and emission bands show the (2J+1)/2 multiplet splittings expected for the C2 symmetry site of Er in the Gd site. The energy positions and halfwidths of the 72 sublevels observed have been tabulated as well as the cross sections of the different multiplets. Six emission band sets have been observed under excitation of the 4F7/2 multiplet. The Judd–Ofelt (JO) parameters of Er3+ in KGW have been calculated: Ω2=8.90×10-20 cm2, Ω4=0.96×10-20 cm2, Ω6=0.82×10-20 cm2. Lifetimes of the 4S3/2, 4F9/2, and 4I11/2 multiplets have been measured in the 5–300 K range of temperature and compared with those calculated from the JO theory. A reduction of the 4S3/2 and 4I11/2 measured lifetimes with increasing erbium concentration has been observed, moreover the presence of multiphonon non-radiative processes is inferred from the temperature dependence of the lifetimes. Received: 15 December 1997/Revised version: 10 July 1998  相似文献   

19.
The relevance of processes contributing to depletion of pump and upper laser levels has been assessed based on experimental data obtained during measurement of excited state absorption, steady state emission and dynamics of excited states as a function of excitation power and activator concentration. It has been concluded that the excited state absorption in YVO4: Nd and YVO4: Er is not significant except for that from the 4 I 11/2 level of Er3+. In these systems, the interionic processes are dominant. In particular, the reported decrease of the YVO4: Er laser slope efficiency when the Er3+ concentration increased from 0.5 to 1 at % is due mainly to the up-conversion by energy transfer from the pump level and upper laser level. Excited state absorption cannot contribute to depletion of excited states involved in the 3 F 4-3 H 6 laser operation near 1800 nm in the YVO4: Tm crystal. However, the heavy doping required to enhance the cross-relaxation process which feeds the upper laser level brings about the migration-accelerated energy transfer to energy sinks.  相似文献   

20.
Spectral properties and emission efficiencies of GdVO4 phosphors   总被引:2,自引:0,他引:2  
GdVO4 with activators Eu, Dy, Sm and Bi has been synthesised by a solid-state reaction. GdVO4:Eu3+ (3%) yielded the highest quantum efficiency of 95%. Interesting energy-transfer properties have been revealed in the mixed-activator phosphor (GdVO4:Eu3+, Sm3+) when excited in the 4f shell of Sm3+ at 408 nm. Bismuth-activated GdVO4 gives rise to a broad-band emission peaking at 525 nm in comparison to YVO4:Bi3+, which gives an emission peak at 570 nm under UV excitation. The quantum efficiency of GdVO4:Bi3+ increases gradually with bismuth concentration and reaches a maximum of 80% for a bismuth concentration of ≈0.5%. There is a shift in the excitation band of GdVO4:Bi3+ towards longer wavelengths with increasing concentration of bismuth, which can lead to energy transfer from bismuth to europium in a phosphor with both these activators. Heat treatment of GdVO4:Bi3+ at 1500 °C for 3–3.5 h resulted in a large percentage of bismuth being lost from the lattice as evaluated by X-ray fluorescence. However, if a large percentage of bismuth (of the order of 3% or more) is initially added, a sufficient quantity of bismuth can still be retained after heat treatment, which can lead to the development of ceramic scintillators for X-ray tomographic applications. Addition of 3–5% boron gives a white GdVO4 phosphor without any chemical treatment. Received: 27 Feruary 2001 / Accepted: 1 August 2001 / Published online: 30 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号