共查询到20条相似文献,搜索用时 140 毫秒
1.
Wataru Yoshida Aki Kezuka Yoshiyuki Murakami Jinhee Lee Koichi Abe Hiroaki Motoki Takafumi Matsuo Nobuaki Shimura Mamoru Noda Shizunobu Igimi Kazunori Ikebukuro 《Analytica chimica acta》2013
An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 106 copies. 相似文献
2.
We have reported the successful conversion of the structural zinc site in zinc finger peptides to a functional zinc site. A series of resulting zinc finger mutants exhibit the hydrolytic ability of the activated ester depending on the coordination geometry and acidity of the zinc ions. In this study, we explored the hydrolytic ability of DNA by the H4 mutant since the mutant showed the highest hydrolytic ability of the activated ester among the series of mutant peptides. The zinc-bound form of the H4 mutant peptide exhibited the hydrolytic ability of activated phosphoesters and even converted the supercoiled plasmid to the nicked circular form. An increasing ionic strength leads to a loss in the nuclease ability of the zinc finger mutants due to the nonspecific interaction between the zinc finger peptide and DNA. In sharp contrast, the three-tandem H4-type zinc finger protein performed the specific DNA hydrolysis at the GC box even at a high ionic strength. Thus, the present study demonstrated that converting the native zinc site to the hydrolytic zinc site in the zinc finger protein is a novel approach for creating artificial nucleases with sequence selectivity. 相似文献
3.
Nagaoka M Doi Y Kuwahara J Sugiura Y 《Journal of the American Chemical Society》2002,124(23):6526-6527
In this communication, a novel strategy for the design of a zinc finger peptide on the basis of alpha-helix substitution has been demonstrated. Sp1HM is a helix-substituted mutant for the wild-type Sp1(zf123) and its alpha-helix of each finger is replaced by that of fingers 4-6 of CF2-II. The circular dichroism spectrum of Sp1HM suggests that Sp1HM has an ordered secondary structure similar to that of Sp1(zf123). From the analyses of the DNA binding affinity and specificity by gel mobility shift assay, it is clearly indicated that Sp1HM specifically binds to the AT-rich sequence (5'-GTA TAT ATA-3') with 3.2 nM dissociation constants. Moreover, the zinc finger peptides for the sequence alternating between the AT- and GC-rich subsites can also be created by the alpha-helix substitution. This strategy is evidently effective and is also more convenient than the phage display method. Consequently, our design method is widely applicable to creating zinc finger peptides with novel binding specificities. 相似文献
4.
Luo M Chen X Zhou G Xiang X Chen L Ji X He Z 《Chemical communications (Cambridge, England)》2012,48(8):1126-1128
In this communication, we demonstrate that graphene oxide (GO) greatly inhibits the peroxidatic activity of a horseradish peroxidase-mimicking DNAzyme. Combining this observation with the unique DNA/GO interactions, an ultrasensitive GO-based chemiluminescence DNA biosensing platform is developed. 相似文献
5.
Analysis of double-stranded DNA by microchip capillary electrophoresis using polymer solutions containing gold nanoparticles 总被引:1,自引:0,他引:1
The impact of gold nanoparticles (GNPs) on the microchip electrophoretic separation of double-stranded (ds) DNA using poly(ethylene oxide) (PEO) is described. Coating of the 75-microm separation channel on a poly(methyl methacrylate) (PMMA) plate in sequence with poly(vinyl pyrrolidone), PEO, and 13-nm GNPs is effective to improve reproducibility and resolution. In this study, we have also found that adding 13-nm GNPs to 1.5% PEO is extremely important to achieve high resolution and reproducibility for DNA separation. In terms of the stability of the GNPs, 100 mM glycine-citrate buffer at pH 9.2 is a good buffer system for preparing 1.5% PEO. The separation of DNA markers V and VI ranging in size from 8 to 2176 base pairs has been demonstrated using the three-layer-coated PMMA microdevice filled with 1.5% PEO containing the GNPs. Using these conditions, the analysis of the polymerase chain reaction products of UGT1A7 was complete in 7 min, with the relative standard deviation values of the peak heights and migration times less than 2.3% and 2.0%, respectively. In conjunction with stepwise changes of the concentrations of ethidium bromide (0.5 and 5 microg/ml), this method allows improved resolution and sensitivity for DNA markers V and VI. 相似文献
6.
Antibodies have traditionally been used for isolating affinity reagents to new molecular targets, but alternative protein scaffolds are increasingly being used for the directed evolution of proteins with novel molecular recognition properties. We have designed a combinatorial library based on the DNA binding domain of the human retinoid-X-receptor (hRXRalpha). We chose this domain because of its small size, stable fold, and two closely juxtaposed recognition loops. We replaced the two loops with segments of random amino acids, and used mRNA display to isolate variants that specifically recognize adenosine triphosphate (ATP), demonstrating a significant alteration of the function of this protein domain from DNA binding to ATP recognition. Many novel independent sequences were recovered with moderate affinity and high specificity for ATP, validating this scaffold for the generation of functional molecules. 相似文献
7.
In weakly acidic buffer medium, the interaction of amikacin with calf thymus DNA, yeast RNA and denatured DNA has been investigated by using resonance Rayleigh scattering (RRS) technique. The result shows that calf thymus DNA is capable of enhancing the RRS intensity of the amikacin, while yeast RNA and denatured DNA have very little enhancement effect. Based on the characteristics, a sensitive assay for detecting double-stranded DNA in the presence of denatured DNA and yeast RNA has been developed. The enhancement of the RRS signal is directly proportional to the concentration of double-stranded DNA in the range 0.02-12.0 μg ml−1 for calf thymus DNA and its detection limit (3σ) is 2.5 ng ml−1. The method shows a wide linear range and high sensitivity, and almost no interference can be observed from RNA, denatured DNA, amino acid and most of the metal ions. The trace amounts of nucleic acid in synthetic samples and practical samples are determined with satisfactory results. Therefore, the proposed method is promising for as an effect means for recognition in vivo and determination in situ of double-stranded DNA. 相似文献
8.
9.
Mitsuhiko Shionoya Eiichi Kimura Hiromi Hayashida Gabor Petho Luigi G. Marzilli 《Supramolecular chemistry》2013,25(2-3):173-176
Abstract Exposure of synthetic polynucleotide poly(dG-dC)·poly(dG-dC) to ZnII cyclen, 2 (cyclen = 1,4,7,10-tetraazacyclododecane), produces a dramatic change in its circular dichroism (CD) spectrum in H2O at pH 7.2, 24°C: the CD spectrum of the initial B form changes to that of the Z form (or a non-Z structure with a left-handed helix) at very low concentrations ([ZnII]/[base pair] in molar basis ≤ 1). By contrast, ZnII-[12]aneN3, 1 ([12]aneN3 = 1,5,9-triazacyclododecane), and ZnII-cyclam, 3 (cyclam = 1,4,8,11-tetraazacyclo-tetradecane), do not significantly have such a topological affect on the polynucleotide even at much higher concentrations. An increase in Na+ ionic strength nullified the effect of 2 on the CD spectrum, indicating an outside interaction (electrostatic and/or hydrogen bonding) of the DNA model. This study illustrates the significance of the macrocyclic ligand structure around the ZnII ion for specific interaction with DNA. 相似文献
10.
A novel separation medium, hydroxyethylcellulose-graft-polyacrylamide (HEC-g-PAM) synthesized by atom transfer radical polymerization (ATRP), used for dsDNA separation by CE is presented. The separation performance of HEC-g-PAM, which has the same graft density and different graft length, has been investigated in Tris-boric acid-EDTA (TBE) buffer solvent mixtures. The temperature-dependent rheological behavior of HEC-g-PAM was also studied by steady-shear rheometry. The results showed that dsDNA fragments between 72 and 1353 bp was achieved with a 30 cm effective capillary length at 150 V/cm using this type of graft copolymer as a separation medium in bare fused-silica capillaries, and separation improvement is obtained in HEC-g-PAM compared with HEC and poly(dimethylacrylamide (PDMA). 相似文献
11.
The analysis of double-stranded (ds) DNA fragments by capillary electrophoresis (CE) using poly(ethylene oxide) (PEO) solution containing gold nanoparticles (GNPs) is presented, focusing on evaluating size dependence of the GNPs and PEO on resolution and speed. To prevent the interaction of the capillary wall with DNA, the capillary was dynamically coated with polyvinylpyrrolidone. Using different PEO solutions containing GNPs ranging in diameter from 3.5 to 56 nm, we have achieved reproducible, rapid, and high-resolution DNA separations. The results indicate that the sizes of PEO and GNPs as well as the concentration of PEO affect resolution. The separation of DNA ranging in size from 8 to 2176 base pairs (bp) was accomplished in 5 min using 0.2% PEO (8 MDa) containing 56 nm GNPs. We have also demonstrated the separations of the DNA fragments ranging from 5 to 40 kbp using 0.05% PEO (2 MDa) containing 13 nm GNPs or 0.05% PEO (4 MDa) containing 32 nm GNPs. With very low viscosity (< 15 cP), automatic replacement of the sieving matrices is easy, indicating a great potential for high-throughput DNA analysis using capillary array electrophoresis systems. 相似文献
12.
13.
ZHANG BinTian DU Xin JIA SuPing HE JunHui & GUO LiangHong State Key Laboratory of Environmental Chemistry Ecotoxicology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing China Functional Nanomaterials Laboratory Key Laboratory of Organic Optoelectronic Functional Materials Molecular Engineering Technical Institute of Physics Chemistry Beijing China 《中国科学B辑(英文版)》2011,(8)
Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DNA sensor was employed to rapidly detect DNA damage induced by polystyrene nanosphere (PSNS) suspensions. In the sensor, a double-stranded DNA film was assembled on a semiconductor electrode, and a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine... 相似文献
14.
Shi X Takamizawa A Nishimura Y Hiraoka K Akashi S 《Journal of mass spectrometry : JMS》2006,41(8):1086-1095
Laser spray, which is a newly developed ionization technique, can characterize the stability of noncovalent complexes in the solution phase. By using this advantage, laser spray has been applied to probe the intrinsic stability of double-stranded DNA (dsDNA) sequences and their binding affinities with various drugs in the solution phase. Systematic experiments were carried out using six 16-mer and three 22-mer dsDNA oligomers, together with the complexes of the 16-mer dsDNA with minor groove binders: berenil, Hoechst 33342, DAPI, and netropsin. Dissociation curves for each dsDNA or each complex were plotted as a function of laser power. The laser power (E50%), where 50% of each dsDNA or each complex was dissociated, was compared with its melting temperature (Tm) determined by UV spectroscopy. Linear correlations between E50% and Tm were obtained not only for the dsDNA oligomers (correlation factor r = 0.9835) but also for the 16-mer dsDNA complexes with minor groove binders (r = 0.9966). In addition, laser spray has successfully clarified the binding affinities of a 16-mer dsDNA with two intercalators: daunomycin and nogalamycin. In the case of the dsDNA-daunomycin complex, by changing the molar ratio of dsDNA : drug from 1 : 1 to 1 : 5, the concentration-dependent stability of the complex was confirmed by laser spray. The present results demonstrate that laser spray mass spectrometry can be a powerful and convenient method to investigate the relative binding affinities of dsDNA-ligand complexes in the solution phase, which could be applied to the early stage of high-throughput screening of drugs targeting for dsDNA. 相似文献
15.
The impact of hexadecyltrimethylammonium bromide (CTAB) on the separation of ds-DNA by capillary electrophoresis in conjunction with laser-induced fluorescence (CE-LIF) detection using poly(ethylene oxide) (PEO) solution is described. The use of CTAB for improved separation reproducibility and efficiency of DNA has not been demonstrated although it is widely used for controlling the magnitude and direction of electroosmotic flow in CE. With increasing CTAB concentration, the interactions of DNA with ethidium bromide (EtBr) and with the capillary wall decrease. For the separation of DNA fragments with the sizes ranging from several base pairs (bp) to 2,176 bp, a polymer solution consisting of 0.75% poly(ethylene oxide), 100 mM TB buffer (pH 8.0), 25 microg/mL EtBr, and 0.36 microg/mL CTAB is proper. Using the PEO solution, we separated a mixture of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BglI digest and pBR 328/HinfI digest) within 8 min at -375 V/cm, with the limit of detection of 2.0 ng/mL based on the peak height for the 18-bp DNA fragment. The method is highly efficient (>10(6)plate/m), repeatable (RSD of the migration times <1.5%), and sensitive. In addition, it is convenient to fill a capillary (75 microm in diameter) with such a low-viscosity PEO solution by syringe pushing. 相似文献
16.
Unlabelled single- and double-stranded DNA (ssDNA and dsDNA, respectively) has been detected at concentrations ≥10(-9) M by surface-enhanced Raman spectroscopy. Under appropriate conditions the sequences spontaneously adsorbed to the surface of both Ag and Au colloids through their nucleobases; this allowed highly reproducible spectra with good signal-to-noise ratios to be recorded on completely unmodified samples. This eliminated the need to promote absorption by introducing external linkers, such as thiols. The spectra of model ssDNA sequences contained bands of all the bases present and showed systematic changes when the overall base composition was altered. Initial tests also showed that small but reproducible changes could be detected between oligonucleotides with the same bases arranged in a different order. The spectra of five ssDNA sequences that correspond to different strains of the Escherichia coli bacterium were found to be sufficiently composition-dependent so that they could be differentiated without the need for any advanced multivariate data analysis techniques. 相似文献
17.
Hailin Wang Meiling Lu Nan Mei Jane Lee Michael Weinfeld X. Chris Le 《Analytica chimica acta》2003,500(1-2):13-20
Human DNA is exposed to a variety of endogenous and environmental agents that may induce a wide range of damage. The critical role of DNA damage in cancer development makes it essential to develop highly sensitive and specific assays for DNA lesions. We describe here ultrasensitive assays for DNA damage, which incorporate immuno-affinity with capillary electrophoresis (CE) separation and laser induced fluorescence (LIF) detection. Both competitive and non-competitive assays using CE/LIF were developed for the determination of DNA adducts of benzo[a]pyrene diol epoxide (BPDE). A fluorescently labeled oligonucleotide containing a single BPDE adduct was synthesized and used as a fluorescent probe for competitive assay. Binding between this synthetic oligonucleotide and a monoclonal antibody (MAb) showed both 1:1 and 1:2 complexes between the MAb and the oligonucleotide. The 1:1 and 1:2 complexes were separated by CE and detected with LIF, revealing binding stoichiometry information consistent with the bidentate nature of the immunoglobulin G antibody. For non-competitive assay, a fluorescently labeled secondary antibody fragment F(ab′)2 was used as an affinity probe to recognize a primary antibody that was specific for the BPDE-DNA adducts. The ternary complex of BPDE-DNA adducts with the bound antibodies was separated from the unbound antibodies using CE and detected with LIF for quantitation of the DNA adducts. The assay was used for the determination of trace levels of BPDE-DNA adducts in human cells. Analysis of cellular DNA from A549 human lung carcinoma cells that were incubated with low doses of BPDE (32 nM–1 μM) showed a clear dose–response relationship. BPDE is a potent environmental carcinogen, and the ultrasensitive assays for BPDE-DNA adducts are potentially useful for monitoring human exposure to this carcinogen and for studying cellular repair of DNA damage. 相似文献
18.
A mixture of two polyoxybutylene-polyoxyethylene-polyoxybutylene (BEB) triblock copolymers (B6E46B6 and B10E271B10, respectively) was used as a new separation medium for separating double-stranded DNA (dsDNA) fragments by capillary electrophoresis (CE). The two block copolymer mixtures were designed to form mixed flower-like micelles in dilute solution and a homogeneous gel-like open-network with hydrophobic clusters as cross-linking points at higher polymer concentrations. Being a polyoxyalkylene block copolymer gel, the separation medium has some special advantages, including the temperature-dependent sol-gel transition that makes sample injection easy, and the self-coating of the inner capillary wall that makes experimental procedures simple and reproducible. Furthermore, it can shorten the elution time and further improve the separation resolution, especially for small dsDNA fragments, when compared with EPE-type separation media, e.g., F127 (E99P69E99, with P being polyoxypropylene) block copolymer gels formed by the closed packing of spherical micelles. Single base pair resolution can be achieved by using the new separation medium for dsDNA fragments up to over 100 base pairs. 相似文献
19.
A noncross-linked interpenetrating polymer network (IPN), consisting of poly(N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP, weight-average molecular weight M(w) = 1 x 10(6) g/mol) was synthesized by polymerizing N,N-dimethylacrylamide (DMA) monomers directly in PVP buffer solution and tested as a separation medium for double-stranded (ds)DNA analysis without further purification. Due to the incompatibility of PVP and PDMA, a simple solution mixture could incur a microphase separation and showed poor performance on dsDNA separation. However, a dramatic improvement was achieved by the formation of an IPN. We attributed the high sieving ability of IPN as due to an increase in the number of entanglements by the more extended polymer chains. Apparent viscosity studies showed that the IPN had a much higher viscosity than the simple mixture containing the same amount of PDMA and PVP. In 1 x Tris-borate-EDTA (TBE) buffer, the concentration ratio of PDMA and PVP had a great effect on the DNA separation. At optimal conditions, the 22 fragments in pBR322/HaeIII DNA were successfully separated within 15 min, with a resolution of better than 1.0 for 123/124 bp. 相似文献
20.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage. Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE 相似文献