首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
深水钢悬链线立管触地区疲劳实验系统设计   总被引:2,自引:0,他引:2  
深水钢悬链线立管(steel catenary riser, SCR)触地区易发生疲劳破坏, 且疲劳寿命预测问题是目前理论计算与数值分析的难点, 通过实验能更好地促进理论和数值研究. 因此在相关理论研究基础上, 设计一套SCR触地区疲劳实验系统, 模拟实际工作状况, 考虑张力、弯曲、内外压与管土相互作用等因素的变化组合. 该实验系统为以后开展深水立管疲劳实验、研究SCR触地区疲劳破坏机理以及准确预测SCR触地区的疲劳寿命奠定基础.  相似文献   

2.
为研究水平管内气液两相螺旋流的流动特性,开展了以空气和水为实验介质,含气率为10%~90%,气相折算速度为0.01~3.4m/s,液相折算速度为0.05~2.7m/s的气液两相螺旋流实验.利用高速摄影机记录并参考借鉴相关研究结果分析和划分了不同工况下的流型;给出了水平管内气液两相螺旋流的流型图;研究了不同流速、不同起旋参数对流动特性(压降、流型衰减、螺距、螺旋直径以及流型转换边界等)的影响.实验结论如下:将水平管内气液两相螺旋流的流型划分为螺旋波状分层流、螺旋泡状流、螺旋团状流、螺旋线状流、螺旋轴状流、螺旋弥散流6种;将绘制的流型图与经典Mandhane流型图进行对比,出现了线状流、弥散流和轴状流3种新的流型;泡状流的分布基本不变,层状流的分布发生变化,当气相流速在2m/s以内时是线状流和轴状流,而不是层状流;随着液相流速的提高,管内两相流动的损失逐渐变大,流型的衰减程度变弱,螺旋扭矩逐渐变大,螺旋直径逐渐变小.另外,随着叶轮角度的增大或者随着叶片面积的减小,流型转换边界均向进气量增大的方向推移.而当进气量一定时,随着叶轮角度的增大或者随着叶片面积的减小,同样流型转换边界趋于进水量增大的方向.最后,随着起旋角度的增大或者随着叶片面积的减小,压降均有逐渐变大的趋势.  相似文献   

3.
本文对垂直布置的管壳式换热器中,气液两相流冲刷管束时的流动阻力进行了实验研究。实验段采用管壳式换热器模型,其圆形外壳内的管束由49根管子组成,并沿长度方向用三块折流板将管束分成四个冲刷流程。当气液两相流自下而上冲刷管束时,分别测量摩擦阻力和局部阻力,并用分相流动模型进行分析,得到良好的计算关联式。  相似文献   

4.
基于有限元模型,模拟、分析深海采矿系统悬链线立管在海流和水面船运动约束下的动力响应。结果表明:悬链线立管的最大等效应力和最大位移随时间呈周期性变化,且存在半个周期的相位差;当水面船运动到最高点时,悬链线立管位移达到最大值。悬链线立管最大 等效应力和最大位移随水面船运动位移幅值的增加而增加,随运动周期的增加而减小。进一步对比发现,水面船运动位移和周期对立管等效应力的影响大于对其位移的影响。  相似文献   

5.
气液二相流研究概述   总被引:2,自引:0,他引:2  
气液二相流研究液体和气体(或蒸气)两相介质共存条件下的流动特性。二相体系可以是液体中含有气体或(蒸气)泡或者气体,(或蒸气)中含有液体微滴,也可能因其中气泡或液滴的聚并,两相间形成更复杂的分布状态。气液二相流是自然界、日常生活中常见的现象,在许   相似文献   

6.
气液两相流理论与气幕降噪   总被引:4,自引:0,他引:4  
气液两相流是广泛存在于工业过程中的复杂现象。本文将就气液两相流的理论、声学特性等方面进行综述,并对其在降噪方面的应用前景进行展望。  相似文献   

7.
基于悬链线理论及立管与海床接触模型,建立了一种估算立管疲劳寿命的方法,模型中考虑了深水浮式平台运动过程中立管悬链线形状的变化及触地区域海床接触刚度大小对疲劳寿命的影响。分析表明:浮式平台的运动会引起立管悬链线形状的改变以及立管内部应力的重新分布,这是引起立管疲劳损坏的主要原因;随着海床土体刚度的增大,立管疲劳寿命逐渐降低,为了获得准确的立管寿命,有必要对海底土体进行更为全面细致的研究。通过与现有分析方法比较,本方法具有计算方便快捷,结果可靠等优点。研究可为钢悬链线立管的设计分析提供一定的参考。  相似文献   

8.
本文以水空气两相流体为工质,研究了两相流体横向冲刷准三角形柱体时的涡街生成特性.试验段管子内径50mm,水流速度2.20m/s-3.74m/s截面含气率为0.02-0.3.得出了两相流体中涡街发生频率,水流量和截面含气率三者之间的相互关系。  相似文献   

9.
气液两相涡街稳定性的研究   总被引:6,自引:1,他引:6  
李永光  林宗虎 《力学学报》1998,30(2):138-144
通过气液两相涡街试验研究和理论分析,首次得出了当有稳定的气液两相涡街发生时,气液两相涡街结构参数的取值及变化规律  相似文献   

10.
气液两相流压力波传播速度研究   总被引:9,自引:0,他引:9  
将双流体模型用于绝热无相的管道气液两相流,依据小扰动线化分析原理,导出了压力波波数K方程通过对不同空隙率下肉体上压力波小随角频率变化的计算,研究了虚拟质量力和狭义相间阻力对压力波波速及其人色散性的影响。对泡状流和弹状流压力波波速的计算结果与前人的测量结果作了比较,两者符合良好。  相似文献   

11.
《力学学报》2012,44(1)
严重段塞流是海洋工程气液混输管线-立管系统中常见的一种特殊有害流动现象,采用水平-下倾-悬链线立管气液混输组合管道系统,通过系列实验在悬链线立管中获得了严重段塞流、间歇流和震荡流等流型,阐述了这些流动现象的形成机理,提出了能够产生严重段塞流的判定准则.结果表明,悬链线立管严重段塞流具有明显周期性,在一个周期内的流动特征可分为液塞形成、液体出流、液气喷发及液体回流等4个阶段,进而给出了各阶段中相关流动参数的变化规律.在实验中同时还对悬链线与垂直立管中严重段塞流形成机理进行了比较分析,发现两者在液塞形成阶段有显著差别.其中,在悬链线立管中液塞形成之前首先需要经历一个气液混合液塞形成过程,而垂直立管则没有这个过程.  相似文献   

12.
In this paper, Euler-Lagrange type equations are used to describe the jet flow of a mixture of pulverized-coal and gas, which is an unsteady axisymmetric two-phase flow. By means of the finite-difference method, the coal particle's distribution, velocity and trajectory in the flow field are obtained. The coal particles are represented by a finite number of computational particles. Each particle's diameter is randomly assigned according to a given distribution. The states of the computational particles are different from each other. Turbulence is accounted for in a stochastic model. Explicit time-splitting scheme is used to calculate the strongly coupling interphase term. The numerical results are reasonable. The comparison between the numerical results and the experiment data for the case of the oil droplet injection shows good agreement. This numerical technique can be extended to the calculation of other two-phase flows of dilute particles or a droplet system. Mr. Mei Renwei also participated in the work of this paper.  相似文献   

13.
A model that describes the critical flow of chemically reacting, two-phase, multicomponent mixtures in channels of constant cross section is discussed. As a consequence of an assumed interphase thermal and mechanical equilibrium the applicability of the model is restricted to situations where one phase is intimately mixed with the other, such that choking is determined by the sound speed in the homogeneous mixture. It is shown that under certain conditions the highly non-linear temperature dependency of the reaction rate promotes the possibility of a multiplicity of steady state solutions to the problem.  相似文献   

14.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

15.
基于考虑接触的钢悬链式立管SCR(Steel Catenary Riser)触地点处的结构特性,分别采用了考虑管土分离的线性截断模型以及包含土体吸力效应的帽盖模型来描述P-y曲线。通过改变上端浮体的垂荡运动幅度、土体吸力系数以及海床刚度,对SCR触地点处的动力响应以及疲劳损伤特性进行了分析。分析结果表明,SCR触地点的垂向位移、弯矩、等效应力以及疲劳损伤均随着浮体垂荡运动幅度的增加而呈上升趋势。SCR触地点的垂向位移随着土体吸力系数的增大由高幅低频响应转变为低幅高频响应。SCR触地点的疲劳损伤随着海床刚度的增加呈现先稳定再增加再稳定的趋势。  相似文献   

16.
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas–solid two-phase flow. The experimental results indicated that solids throughput increased with increasing solids–gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse–dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss. These experimental results provide important reference data for the development of pneumatic conveying technology.  相似文献   

17.
According to a mathematical model for dense two-phase flows presented in theprevious paper,a dense two-phase flow in a vertical pipeline is analytically solved,and theanalytic expressions of velocity of each continuous phase and dispersed phase arerespectively derived The results show that when the drag force between two phases dependslinearly on their relative velocity,the relative velocity profile in the pipeline coincides withDarcy’s law except for the thin layer region near the pipeline wall,and that the theoreticalassumptions in the dense two-phase flow theory mentioned are reasonable.  相似文献   

18.
Adiabatic and diabatic two-phase venting flow in a microchannel   总被引:1,自引:0,他引:1  
The growth and advection of the vapor phase in two-phase microchannel heat exchangers increase the system pressure and cause flow instabilities. One solution is to locally vent the vapor formed by capping the microchannels with a porous, hydrophobic membrane. In this paper we visualize this venting process in a single 124 μm by 98 μm copper microchannel with a 65 μm thick, 220 nm pore diameter hydrophobic Teflon membrane wall to determine the impact of varying flow conditions on the flow structures and venting process during adiabatic and diabatic operation. We characterize liquid velocities of 0.14, 0.36 and 0.65 m/s with superficial air velocities varying from 0.3 to 8 m/s. Wavy-stratified and stratified flow dominated low liquid velocities while annular type flows dominated at the higher velocities. Gas/vapor venting can be improved by increasing the venting area, increasing the trans-membrane pressure or using thinner, high permeability membranes. Diabatic experiments with mass flux velocities of 140 and 340 kg/s/m2 and exit qualities up to 20% found that stratified type flows dominate at lower mass fluxes while churn-annular flow became more prevalent at the higher mass-flux and quality. The diabatic flow regimes are believed to significantly influence the pressure-drop and heat transfer coefficient in vapor venting heat exchangers.  相似文献   

19.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


20.
The effect of liquid viscosity on the initiation of slug flow was studied in horizontal 2.52 and 9.53 cm pipelines. The results show the stabilizing effect of viscosity predicted by Lin & Hanratty, and are at variance with analyses which use a long-wavelength inviscid approximation. For very viscous liquids a stability analysis which recognizes that slugs originate from a train of small-wavelength sinusoidal waves seems consistent with the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号