首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
焦予秦  陆岩 《应用力学学报》2015,(2):215-220,350-351
基于雷诺平均Navier-Stokes粘性流动方程,采用数值模拟方法,分析了吹气控制对多段翼型气动性能的影响,阐述了吹气改善多段翼型流动的机理。采用有限体积法对雷诺平均Navier-Stokes方程进行空间离散,时间方向推进采用二阶迎风格式,湍流模型采用SST k-ω模型。结果表明:在多段翼型基础上采取吹气控制可以获得很好的气动增升效果,三段翼型的最大升力系数可达4.98;吹气可改善多段翼型表面流动,减小其流动分离,增加升力;在同样的吹气口几何参数条件下,在一定范围内增大吹气动量系数可以提高多段翼型的升力系数;在多段翼型主翼后段和襟翼同时施加吹气流动控制可以获得更好的效果,升力系数比基本三段翼型(基本构型A)增加30.05%。  相似文献   

2.
针对低雷诺数翼型气动性能差的特点,通过介质阻挡放电(dielectric barrier discharge,DBD)等离子体激励控制的方法,提高翼型低雷诺数下的气动特性,改善其流场结构.采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值...  相似文献   

3.
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   

4.
本文使用分离变量法求解非定常流动。消去了时间变量,建立了三维和二维的非定常流动的分离变量以后的位势方程,作为算例计算了通风机蜗壳中的声场,得到了共鸣和不共鸣两种情况下的结果。  相似文献   

5.
空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况,分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中,对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主,同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.  相似文献   

6.
空化水动力学非定常特性研究进展及展望   总被引:1,自引:0,他引:1  
空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.   相似文献   

7.
弹性振动对翼型气动特性影响的数值模拟   总被引:1,自引:0,他引:1  
通过求解雷诺平均非定常Navier-Stokes方程,采用数值模拟方法计算了俯仰和沉浮振动对NACA0012翼型平均气动特性的影响.结果表明:对于俯仰运动而言,在迎角13α≤时的升力°和力矩曲线的线性段部分,振幅角的变化对动态平均升力系数和动态平均力矩系数的影响不明显,与静态时的情况基本一致;当迎角14α≥时,翼型振动的平均升力系数和动态平均力矩系数小°于静态时的情况.同一迎角条件下的俯仰振动频率越高时,其动态的平均升力系数和动态平均力矩系数越大,频率较高时的失速迎角相对于频率较低时的情况有所推迟,但相对于静态的失速迎角而言,不同频率下的动态失速迎角均提前.对于沉浮运动而言,动态平均升力系数随振幅和频率的增加而减小,动态失速迎角随振幅和频率的增大而提前.  相似文献   

8.
用热线风速仪研究多段翼型前缘缝翼在不同条件下流动速度的定常性和非定常性。结合多段翼型定常流动Navier-Stokes方程数值模拟的结果,分析了迎角、后缘襟翼参数(偏角、缝道宽度、搭接量)对缝翼定常和非定常流动速度的影响规律。研究结果表明:在缝翼后缘处,流动分为缝道加速流动区、缝翼尾流区、缝翼上表面以上的主流区;缝翼尾流区流动速度非定常性主要表现在中低频率范围(2k Hz以下),而缝道加速流动区和缝翼上表面以上的主流区流动非定常性常表现出高频特性(2k Hz以上);在失速前随迎角增加,或者当襟翼偏角从20°向30°增加时,缝道流动加速,槽区涡减小;缝翼槽区涡形成和振荡是中低频率范围流动非定常性的机理,而缝翼鼻尖脱落涡是缝翼槽区涡振荡的激励因素。  相似文献   

9.
弹性连杆机构的非线性动力学特性分析   总被引:4,自引:0,他引:4  
本文应用动力学虚功原理建立了计入几何非线性时弹性连杆机构一般形式的动力学有限元模型,该模型是具有周期性的时变非线性微分方程,针对方程的这一特点,文中给出了一种高效的闭式迭代求解方法。最后通过实例研究了几何非线性对弹性连杆机构动特性的影响,并通过实验研究验证了本文建模及求解方法的正确性。本文的研究结果对弹性机构的动态设计有指导意义。  相似文献   

10.
可变形儒可夫斯基翼型非定常气动力的研究   总被引:1,自引:0,他引:1  
对于翼面变形法向运动速度远小于来流速度的儒可夫斯基机翼,将解析解和离散涡方法相结合计算变形机翼的流场及非定常气动力,较详细地分析了变形机翼升力系数的准定常计算方法的误差来源,并给出修正方法.计算结果显示脱落涡尾迹对升力系数和机翼绕流环量的影响很小,变形机翼升力系数准定常计算方法的误差丰要来源于流体非定常运动引起的虚拟质量力,该非定常附加升力仅与当前时刻飞行姿态及翼犁形状和变形速率有关,与具体的变形历史过程无关,变形机翼的升力近似等于准定常计算结果叠加上相应的虚拟质量力.  相似文献   

11.
《力学学报》2012,44(1)
对在低雷诺数下局部弹性翼型绕流中,局部弹性导致的自激振动所产生的复杂非定常流动分离现象和描述方法进行了分析.采用ALE—CBS方法数值模拟了具有可动边界的绕流流场问题,同时采用Galerkin方法求解局部弹性结构的控制方程.着重研究了翼型的局部弹性对流动分离和翼型性能的影响,并分别从Eulerian和Lagrangian的角度分析了局部弹性结构导致的不同非定常分离现象,其中Lagrangian角度可以方便地揭示出局部弹性翼型大幅度提高升力的机理和流动中的能量迁移.结果表明翼型的局部弹性对非定常分离和分离泡的演化过程有着明显的影响,可以使得流体质点由主流获取动量实现再附,并且在一定的攻角下可以将固定分离转变为移动分离,从而明显地提高了翼型的升力.  相似文献   

12.
翼型大攻角状态下表面吸气驻涡增升的数值模拟实验   总被引:1,自引:0,他引:1  
李锋  汪翼云  崔尔杰 《力学学报》1993,25(5):632-637
用数值模拟方法给出了翼型大攻角状态表面吸气后绕翼型流动的某些新现象并对流场的特性进行了机理性研究,其中包括吸气对翼型背风面分离涡的驻涡增升作用;吸气孔位置对流场的影响;不同吸气强度以及间歇式吸气的增升效应。数值模拟的出发方程为N-S方程,差分格式为Beam-Warming格式。数值实验表明:(1)吸气可有效地提高翼型大攻角状态下的升力;(2)在一定吸气强度下吸气可使翼型背风面上涡的非定常脱落现象消失从而起到驻涡作用;(3)吸气孔位置在翼面的中部附近增升效果较好;(4)在一定范围内吸气强度越强其升力越高;(5)间歇式吸气也可提高平均升力,但引起升力的波动。  相似文献   

13.
孙茂  王家禄  连淇祥 《力学学报》1992,24(5):517-521
本文通过在翼型上游和翼表面边界层内放置产生氢气泡的铂丝的方法,清楚地显示了上仰翼型分离剪切层的结构。揭示了在不同的翼型转动角速度范围内,存在三种分离流结构。研究了失速涡,剪切涡及起动涡随时间的演变,它们之间的相互作用和转动角速度等参数的影响,分离剪切层的流动显示结果,结合翼型上气动力与流场中涡量矩的关系的理论,定性地解释了上仰翼型产生非定常高升力的原因。  相似文献   

14.
钝锥三维粘性绕流背风面分离的数值模拟   总被引:1,自引:0,他引:1  
傅德薰  马延文 《力学学报》1991,23(2):129-138
本文将作者在文献[1]中提出的方法推广应用于求解三维可压缩 N-S 方程和简化 N-S 方程,并对近似因式分解法应用于三维问题的稳定性进行了分析。指出,对二维问题原无条件稳定的格式,经近似因式分解后仍是无条件稳定的;对于三维问题,原无条件稳定的格式经普通近似因式分解后所得到的格式可能是不稳定的或条件稳定的。利用系数矩阵分裂法所得到的近似因式分解格式可仍是无条件稳定的,只要适当加大分裂后的系数反差即可。 文中给出了钝锥超音速三维粘性绕流结果。得到了背风面分离的流动图像,物面压力值与实验值吻合。  相似文献   

15.
合成射流对失速状态下翼型大分离流动控制的试验研究   总被引:1,自引:0,他引:1  
为研究低速状态合成射流在抑制翼型气流分离和推迟失速方面的控制机理, 开展了NACA0021 翼型失速特性射流控制的风洞试验研究. 通过系统性的模型测力、翼型瞬态流场粒子图像测速和边界层速度测定的对比试验, 深入探索了合成射流各参数对翼型失速特性控制效果的影响规律. 试验结果表明射流偏角在翼型升力和失速迎角控制方面的效果对射流动量系数较为敏感: 当动量系数较大时, 近切向射流的控制效果更好. 射流动量系数为0.033 时, 偏角30°的射流使得翼型升力系数峰值提高23.56%, 失速迎角增大5°; 而动量系数较小时, 偏角较大的射流能够获得最佳控制效果. 射流动量系数为0.0026 时, 法向射流对翼型最大升力系数控制效果最好(提高9.2%).   相似文献   

16.
用数值模拟手段详细地研究了振动翼型和襟翼的绕流问题,数值模拟的出发方程为Euler和N-S方程,格式为Bcam-Warming格式的改进型。数值实验主要针对流场的二大特性进行的,即振动对激波的影响和振动对分离的抑制作用,结果表明:(1)随翼型或襟翼的振动激波强度和位置也相应地变化但这一变化滞后于攻角的变化;(2)振幅加大激波强度的变化和激波运动范围也加大;(3)振动频率越高对激波的影响反而较低频时要小;(4)流动条件的不同可使升力回线的走向发生变化;(5)振动对分离有明显的抑制作用。  相似文献   

17.
广义Maxwell黏弹性流体在两平板间的非定常流动   总被引:2,自引:0,他引:2  
将分数阶微积分运算引入Maxwell黏弹性流体的本构方程,研究了黏弹性流体在两平板问的非定常流动.对于广义Maxwell黏弹性流体的分数阶导数模型,导出了对时间具有分数阶导数的特殊运动方程,利用分数阶微积分的Laplace变换理论,得到了流动的解析解.  相似文献   

18.
本文综合Chorin的涡方法、网格涡方法和泊松方程快速解法的优点,采用固定离散涡的数目和位置,随时间变化调整离散涡强度的计算方法,对Kc数在1到5之间,β数在10到1665之间圆柱在振荡流动中的流场结构进行了数值模拟。并与U型振荡水槽中的流场涡结构显示照片比较,计算结果表明,数值解在稳定性和收敛性方面都是比较好的。与显示照片相比,其符合程度也是令人满意的。  相似文献   

19.
袁镒吾 《力学季刊》1994,15(2):74-79
文(1)研究了平板表面吸吮速度按照某一规律变化时,非牛顿幂律流体绕可渗透平板非定常流动的运动方程的相似解。本文补充研究吸吮速度按照其它一些规律变化时该问题的准确的或近似的相似解。  相似文献   

20.
应用当地流活塞理论的大攻角升力面颤振气动力表达式   总被引:6,自引:0,他引:6  
杨炳渊  宋伟力 《力学季刊》1999,20(3):223-228
本文应用当地流活塞理论,给出了弹性的夺动翼面的非定常压分分布以及用模态坐标的广义气动力系数表达式。同时提供了配套的当地流参数计算公式和采用样条函数计算广义气动力系数数值积分的表达式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号