首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.  相似文献   

3.
In the case of local anesthetic intoxication, intravenous administration of lipid-based Intralipid dispersion (Fresenius Kabi) can be used for the entrapment of hydrophobic drugs. Our long-term aim is to develop a sensitive, efficient, and non-harmful lipid-based formulation to specifically trap harmful substances. In this study liposome electrokinetic capillary chromatography (LEKC) was used to study the interactions between local anesthetics and Intralipid or liposome dispersions. Intralipid dispersion and extruded liposomes with different concentrations of 1-palmitoyl-2-oleyl-sn-glycerophosphatidylcholine (POPC), phosphatidylglycerol, cardiolipin, cholesterol, oleic acid, and linoleic acid were used as a pseudostationary phase in LEKC and their interactions with lidocaine, prilocaine, and bupivacaine were studied. POPC liposomes containing 1 mol% of palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine as a fluorescent marker were used for the first time in LEKC connected with laser-induced fluorescent detection in order to calculate the retention factor for anesthetics.  相似文献   

4.
Interactions between low-molar mass analytes and phospholipid membranes were studied by liposome electrokinetic capillary chromatography (LEKC). The analytes were pesticides, some degradation products, and compounds associated with the manufacture of pesticides. Negatively charged liposome dispersions with different zwitterionic lipids (PC) were applied to the determination of retention factors (k) of 15 charged and uncharged compounds. The liposome dispersions consisted of 80:20 mol% of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/POPS, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS. Retention factors were calculated from the effective electrophoretic mobilities of the analytes under LEKC and CZE conditions and from the effective electrophoretic mobilities of the liposomes, determined by CZE with a polyacrylamide-coated capillary. Determining the liposome mobilities in this way proved to be a good alternative to the conventional method employing a liposome marker compound. The log k values of the analytes for the different liposome dispersed phases were correlated with one another. In addition, correlation curves were determined between log k and calculated octanol-water partition coefficients. The results showed that the zwitterionic phospholipid in the liposome has a major impact on the interactions between the tested compounds and the lipid membranes.  相似文献   

5.
Immobilized liposome chromatography (ILC) has been proven to be a useful method for the study or rapid screening of drug-membrane interactions. To obtain an adequate liposomal membrane phase for ILC, unilamellar liposomes were immobilized in gel beads by avidin-biotin binding. The retardation of 15 basic drugs on the liposome column could be converted to membrane partitioning coefficients, K(LM). The effects of small or large unilamellar liposomes and multilamellar liposomes on the drug-membrane partitioning were compared. The K(LM) values for both small and large liposomes were similar, but higher than those for the multilamellar liposomes. The basic drugs showed stronger partitioning into negatively charged liposomes than into either neutral liposomes or positively charged liposomes. The membrane fluidity of the immobilized liposomes was modulated by incorporating cholesterol into the liposomal membranes, by changing the acyl chain length and degree of unsaturation of the phospholipids, and by changing the temperature for ILC runs. Our data show that K(LM) obtained using ILC correlated well with those reported by batch studies using free liposomes. It is concluded that negatively charged or cholesterol-containing large unilamellar liposomes are suitable models for the ILC analysis of drug-membrane interactions.  相似文献   

6.
The acid-base properties of Zn-hematoporphyrin IX (ZnHP) and Zn-mesoporphyrin IX (ZnMP) and the effect of pH on their binding to liposomes have been studied. The ionization constants for the two carboxylate groups of ZnHP were calculated by principal component analysis and are 5.7 +/- 0.1 and 6.9 +/- 0.05. The neutral species and the mono- and dianionic forms all bind to liposomes, but a strong pH effect on the binding constant was observed for both the investigated compounds. We also observed a decrease in the binding of the two anionic species when the membranes carried a negative charge. These results indicate that the porphyrins partition into the membrane with their carboxylic moieties near the lipid-water interface so that their deprotonation, leading to a charged molecule, does not prevent the insertion of the tetrapyrrole ring into the lipid environment of neutral liposomes.  相似文献   

7.
The effects of adsorption of two kinds of proteins on the membrane characteristics of liposomes were examined at pH 7.4 in terms of adsorption amounts of proteins on liposomes, penetrations of proteins into liposomal bilayer membranes, phase transition temperature, microviscosity and permeability of liposomal bilayer membranes, using positively charged lysozyme (LSZ) and negatively charged bovine serum albumin (BSA) as proteins and negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG) liposomes. The saturated adsorption amount of LSZ was 720 g per mol of liposomal DPPG, while that of BSA was 44 g per mol of liposomal DPPG. The penetration of LSZ into DPPG lipid membranes was greater than that of BSA. The microviscosity in the hydrophobic region of liposomal bilayer membranes increased due to adsorption (penetration) of LSZ or BSA, while the permeability of liposomal bilayer membranes increased. The gel-liquid crystalline phase transition temperature of liposomal bilayer membranes was not affected by adsorption of LSZ or BSA, while the DSC peak area (heat of phase transition) decreased with increasing adsorption amount of LSZ or BSA. It is suggested that boundary DPPG makes no contribution to the phase transition and that boundary DPPG and bulk DPPG are in the phase-separated state, thereby increasing the permeability of liposomal bilayer membranes through adsorption of LSZ or BSA. A possible schematic model for the adsorption of LSZ or BSA on DPPG liposomes was proposed.  相似文献   

8.
The use of pH-sensitive liposomes for acid-triggered site-specific drug delivery is one of the more promising approaches to improve the therapeutic index of drugs. Here, we report the synthesis, assembly, and hydrolysis of the first ortho ester phosphocholine (OEPC). The acid hydrolysis of OEPC liposomes consists of a lag phase and a burst phase. The lag time is pH-dependent-the lower the pH, the shorter the time. Upon acid hydrolysis, the OEPC liposomes were transformed into leaky metastable vesicles that rapidly collapsed in the presence of albumin. OEPC, when formulated with cationic lipid, significantly enhanced the transfection efficiency compared with that of the pH-insensitive formulation.  相似文献   

9.
Multicomponent cationic lipid-DNA complexes (lipoplexes) were prepared by adding linear DNA to mixed lipid dispersions containing two populations of binary cationic liposomes and characterized by means of small angle X-ray scattering (SAXS). Four kinds of cationic liposomes were used. The first binary lipid mixture was made of the cationic lipid (3'[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol) and the neutral helper lipid dioleoylphosphocholine (DOPC) (DC-Chol/DOPC liposomes), the second one of the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the neutral dioleoylphosphatidylethanolamine (DOPE) (DOTAP/DOPE liposomes), the third one of DC-Chol and DOPE (DC-Chol/DOPE liposomes), and the fourth one of DOTAP and DOPC (DOTAP/DOPC liposomes). Upon DNA-induced fusion of liposomes, large lipid mixing at the molecular level occurs. As a result, highly organized mixed lipoplexes spontaneously form with membrane properties intermediate between those of starting liposomes. By varying the composition of lipid dispersions, different DNA packing density regimes can also be achieved. Furthermore, occurring lipid mixing was found to induce hexagonal to lamellar phase transition in DOTAP/DOPE membranes. Molecular mechanisms underlying experimental findings are discussed.  相似文献   

10.
11.
To obtain information about the factors governing spontaneous inter-membrane protein transfer, we examined the effects of incorporation of various amphiphilic compounds in dimyristoylphosphatidylcholine (DMPC) liposomes on protein transfer from influenza virus-infected cells to the liposomes, and analyzed the physical properties of these liposome membranes. The incorporation of amphiphilic compounds, negatively charged dicetylphosphate (DCP), dipalmitoylphosphatidylserine (DPPS) or positively charged dimethyldipalmitoylammonium (DMDPA), into DMPC liposomal membranes enhanced protein transfer. The liposomes containing DCP, DPPS or DMDPA were unaffected by osmotic shock caused by external addition of glucose, suggesting a decrease in lipid packing in the liposomal membranes. Furthermore, calorimetric study of these liposomes showed that a phase separation occurred partially in the liposomal membranes. Accordingly, the membranes of DMPC liposomes containing DCP, DPPS and DMDPA should be distorted due to the coexistence of two phases, gel and liquid crystalline, in the membranes. Consequently, the membrane distortion could be responsible for the enhancement effects of the amphiphiles on the inter-membrane protein transfer from influenza virus-infected cells to the liposomes.  相似文献   

12.
To understand more fully the effect of polyunsaturated fatty acids (PUFAs) on lipid bilayers, we investigated the effects of treatment with fatty acids on the properties of a model membrane. Three kinds of liposomes comprising dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC), and cholesterol (Ch) were used as the model membrane, and the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and detergent insolubility were determined. Characterization of the liposomes clarified that DPPC, DPPC/Ch, and DPPC/DOPC/Ch existed as solid-ordered phase (L beta), liquid-ordered phase (l o), and a mixture of l o and liquid-disordered phase (L alpha) membranes at room temperature. Treatment with unsaturated fatty acids such as oleic acid (OA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) markedly decreased the fluorescence anisotropy value and detergent insolubility. PUFAs and OA had different effects on the model membranes. In DPPC liposomes, the most prominent change was induced by PUFAs, whereas, in DPPC/Ch and DPPC/DOPC/Ch liposomes, OA had a stronger effect than PUFAs. The effect of PUFAs was strongly affected by the amount of Ch in the membrane, which confirmed a specific effect of PUFAs on the Ch-poor membrane domain. We further explored the effect of fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted on the membranes even when incorporated in emulsion form. These findings suggest that treatment with PUFAs increases the segregation of ordered and disordered phase domains in membranes.  相似文献   

13.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

14.
With the tremendously increasing numbers of novel drug candidates, there remains a compelling need for rapid screening methods for drug-like physiochemical and pharmacokinetic properties. Different technologies have emerged that enable rapid screening in vitro for sorting out new chemical entity (NCE) classes. It is invaluable for these technologies being developed early in the drug discovery process to avoid the loss of cost and time in late development due to poor absorption and/or bioavailability. In this study, liposome electrokinetic chromatography (LEKC) serves as a convenient, rapid and cost-effective tool to determine lipophilicity and to predict human oral absorption. Twenty-seven organic neutral molecules were evaluated by octanol/water system (log P ow) and LEKC (log k), and linear solvation energy relationship (LSER) analysis was conducted to compare the retention mechanism between LEKC and octanol/water system. LEKC can provide a rapid indirect measurement of log P ow for small organic neutral molecules. A clearly sigmoidal relationship could be seen by correlating log k with the fraction of 25 drugs absorbed in humans (Fa), and the outliers suggested the involvement of non-transcellular passive diffusion, e.g. active transport, paracellular route; on the contrary, it is not the case with the octanol/water system. Therefore, LEKC, in combination with other permeability prediction model, can provide a primary screen for a large number of drug candidates at early stage of the drug discovery process with high-throughput and at low-cost.  相似文献   

15.
A novel change of phase behavior and properties of polyvinyl alcohol (PVA)/gelatin blends as a function of pH was reported. The PVA/gelatin blends were found to be completely miscible in acidic condition (pH < 4), partially miscible in basic condition (pH > 8), and immiscible in neutral condition (pH was ca. 6). As a result, the membranes cast from acidic condition showed the highest tensile strength and the lowest alcohol vapor permeation (AVP) rate; those obtained from neutral condition showed the lowest tensile strength and highest AVP rate; the properties of membranes cast from basic condition lay in between. The interaction between PVA and gelatin was investigated via Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC), and Zetasizer measurement. The novel pH‐dependence of the blends was ascribed to the protonation of amino groups of gelatin in acidic condition, which resulted in a strong electrostatic attraction between ? NH of gelatin and ? OH of PVA. The partial miscibility in basic condition was due to the ionization of carboxyl groups of gelatin, which caused a stretching of gelatin via electrostatic repulsive force and a breakage of the H‐bonding among the molecular chains, leading to a limited interaction between PVA and gelatin and forming a partially miscible blend. In neutral conditions, there were almost no charges (very limited protonation and ionization) at the weak polyampholyte gelatin, and the strong H‐bonding among gelatin molecules themselves or PVA molecules themselves caused the phase separation between gelatin and PVA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 239–247, 2009  相似文献   

16.
17.
脂质体电动色谱法评价阿魏酸与生物膜的相互作用   总被引:2,自引:0,他引:2  
利用脂质体与生物膜结构的相似性,将脂质体加入毛细管电泳缓冲溶液中作为假固定相,在数分钟内测定了阿魏酸的脂水分配系数Klw,建立了脂质体电动色谱评价阿魏酸与生物膜相互作用的方法。研究了脂质体中胆固醇的含量、缓冲溶液pH值和缓冲体系对Klw的影响。结果表明,在实验条件范围内(胆固醇含量0~30%,pH值4.0~12.0),胆固醇含量升高,缓冲溶液pH值增大,Klw降低;在不同的缓冲体系中,离子强度越大,Klw越大。脂水分配系数的变化反映了阿魏酸与生物膜相互作用。  相似文献   

18.
The chromatographic retention and membrane activity relationships of local anesthetics were studied to address the possible mechanisms for structure specificity and inflammation-associated decrease of their effects. Five representative drugs (3 mM for each) were reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposomes in 25 mM potassium phosphate buffer (pH 5.9-7.9, containing 100 mM NaCl and 0.1 mM EDTA) for 10 min at 37 degrees C and the membrane fluidity changes were analyzed by measuring fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene. Their capacity factors were determined on octadecyl-, octyl- and phenyl-bonded silica columns with a mobile phase consisting of 25 mM potassium phosphate buffer (pH 5.9-7.9, containing 100 mM NaCl and 0.1 mM EDTA)-methanol (30:70, v/v) at a flow rate of 1.0 ml/min and at a column temperature of 37 degrees C and diode-array detection. Mepivacaine, prilocaine, lidocaine, ropivacaine and bupivacaine fluidized membranes in increasing order of intensity, which agreed with their clinical potency. The relative degree of membrane fluidization correlated with that of retention on an octadecyl stationary phase more significantly than the other phases. Both membrane-fluidizing effects and capacity factors decreased by lowering the reaction and mobile phase pH, being consistent with the hypothesis that anesthetic potency is reduced in inflammation because of tissue acidity. Reversed-phase liquid chromatography appears to be useful for estimating the structure-specific and pH-dependent membrane-fluidizing effects of local anesthetics.  相似文献   

19.
Egg phosphatidylcholine (PC) liposomes bearing pH-sensitive polymers and dioleoylphosphatidylethanolamine (DOPE) liposomes including the same polymers were prepared by a sonication method. As pH-sensitive polymers, copolymers of N-isopropylacrylamide, methacrylic acid, and octadecylacrylate were used. The liposomes were stable in neutral pH ranges in terms of release. But the release became marked at pH 5.5, and it was accelerated as pH further decreased. For example, the degree of release from egg PC liposomes (polymer/lipid ratio is 3:10, w/w) for 120 s increased from 2% to 63% as pH decreased from 7.5 to 4.5. Under the same condition, the degree of release from DOPE liposomes increased from 4% to 80%. These results indicate that DOPE liposome is more pH-sensitive than egg PC liposome.  相似文献   

20.
The present study is a continuation of our efforts to investigate the effect of electrostatic interactions and ionization on immobilized artificial membrane (IAM) retention. The previous set of neutral and basic drugs was extended to include acids and ampholytes and analogous buffer conditions in the mobile phase were used, namely morpholinepropanesulfonic acid and phosphate buffer saline, adjusted at pH 7.4. The important contribution of electrostatic forces in IAM retention of positively charged species was further justified by the results of the present study, while analogous electrostatic interactions for ionized acidic drugs were not found to affect significantly the affinity for the IAM stationary phase. The critical role of shielding or exposure of the charged centers on the IAM surface, as a result of the effect of the aqueous component of the mobile phase, was evaluated by the use of water instead of buffer for a number of drugs. Measurements at pH 5.0 demonstrated the effect of ionization in IAM retention despite the partial compensation by electrostatic interactions in the case of protonated basic drugs. Silanophilic interactions were also found to play a potential role as secondary interactions in IAM retention. IAM chromatographic indices were compared to octanol-water distribution coefficients and the corresponding relationships established. Finally, solvation analysis was applied in the aim to gain insight in the balance of forces between IAM retention and octanol-water partitioning. The results showed that apart from electrostatic interactions, there is no significant differentiation between the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号