首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The growing number of protein–ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein–ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein–ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein–ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein–ligand complex structures available to improve predictions on binding.  相似文献   

3.
The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4 (GC4), which focused on predicting the binding poses and affinity ranking for compounds targeting the $$\beta$$-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 Å RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and DOCK 6 and found that using a reference ligand to guide the docking process is a better strategy for pose prediction and helped HYBRID to perform better here. We also conducted end-point free energy estimates on molecules dynamics based ensembles of protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R GC4 are: (i) the generation of the macrocyclic conformers is a key step for successful pose prediction, (ii) the protonation states of the BACE-1 binding site should be treated carefully, (iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and (iv) the MM-GBSA method does not perform well at predicting protein–ligand binding affinities here.  相似文献   

4.
Novel methods for drug discovery are constantly under development and independent exercises to test and validate them for different goals are extremely useful. The drug discovery data resource (D3R) Grand Challenge 2015 offers an excellent opportunity as an external assessment and validation experiment for Computer-Aided Drug Discovery methods. The challenge comprises two protein targets and prediction tests: binding mode and ligand ranking. We have faced both of them with the same strategy: pharmacophore-guided docking followed by dynamic undocking (a new method tested experimentally here) and, where possible, critical assessment of the results based on pre-existing information. In spite of using methods that are qualitative in nature, our results for binding mode and ligand ranking were amongst the best on Hsp90. Results for MAP4K4 were less positive and we track the different performance across systems to the level of previous knowledge about accessible conformational states. We conclude that docking is quite effective if supplemented by dynamic undocking and empirical information (e.g. binding hot spots, productive protein conformations). This setup is well suited for virtual screening, a frequent application that was not explicitly tested in this edition of the D3R Grand Challenge 2015. Protein flexibility remains as the main cause for hard failures.  相似文献   

5.
Journal of Computer-Aided Molecular Design - We report the performance of our newly introduced Ensemble Docking with Enhanced sampling of pocket Shape (EDES) protocol coupled to a template-based...  相似文献   

6.
The rapid development of new machine learning techniques led to significant progress in the area of computer-aided drug design. However, despite the enormous predictive power of new methods, they lack explainability and are often used as black boxes. The most important decisions in drug discovery are still made by human experts who rely on intuitions and simplified representation of the field. We used D3R Grand Challenge 4 to model contributions of human experts during the prediction of the structure of protein–ligand complexes, and prediction of binding affinities for series of ligands in the context of absence or abundance of experimental data. We demonstrated that human decisions have a series of biases: a tendency to focus on easily identifiable protein–ligand interactions such as hydrogen bonds, and neglect for a more distributed and complex electrostatic interactions and solvation effects. While these biases still allow human experts to compete with blind algorithms in some areas, the underutilization of the information leads to significantly worse performance in data-rich tasks such as binding affinity prediction.  相似文献   

7.
The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau?~?0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.  相似文献   

8.
We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 Å respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.  相似文献   

9.
The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.  相似文献   

10.
The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein–ligand docking protocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures. We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking predictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission protocol and running a series of additional molecular docking experiments. We conclude that a correct receptor structure, or more precisely, the structure of the binding pocket, plays the crucial role in the success of our docking studies. We have also noticed the important role of a local ligand geometry, which seems to be not well discussed in literature. We succeed to improve our results up to the mean RMSD value of 2.15–2.33 Å  dependent on the models of the ligands, if docking these to all available homologous receptors. Overall, for docking of ligands of diverse chemical series we suggest to perform docking of each of the ligands to a set of multiple receptors that are homologous to the target.  相似文献   

11.
The D3R Grand Challenge 4 provided a brilliant opportunity to test macrocyclic docking protocols on a diverse high-quality experimental data. We participated in both pose and affinity prediction exercises. Overall, we aimed to use an automated structure-based docking pipeline built around a set of tools developed in our team. This exercise again demonstrated a crucial importance of the correct local ligand geometry for the overall success of docking. Starting from the second part of the pose prediction stage, we developed a stable pipeline for sampling macrocycle conformers. This resulted in the subangstrom average precision of our pose predictions. In the affinity prediction exercise we obtained average results. However, we could improve these when using docking poses submitted by the best predictors. Our docking tools including the Convex-PL scoring function are available at https://team.inria.fr/nano-d/software/.  相似文献   

12.
Here is reported the development of a novel scoring function that performs remarkably well at identifying the native binding pose of a subset of HSP90 inhibitors containing aminopyrimidine or resorcinol based scaffolds. This scoring function is called PocketScore, and consists of the interaction energy between a ligand and three residues in the binding pocket: Asp93, Thr184 and a water molecule. We integrated PocketScore into a molecular docking workflow, and used it to participate in the Drug Design Data Resource (D3R) Grand Challenge 2015 (GC2015). PocketScore was able to rank 180 molecules of the GC2015 according to their binding affinity with satisfactory performance. These results indicate that the specific residues considered by PocketScore are determinant to properly model the interaction between HSP90 and its subset of inhibitors containing aminopyrimidine or resorcinol based scaffolds. Moreover, the development of PocketScore aimed at improving docking power while neglecting the prediction of binding affinities, suggesting that accurate identification of native binding poses is a determinant factor for the performance of virtual screens.  相似文献   

13.
Induced fit or protein flexibility can make a given structure less useful for docking and/or scoring. The 2015 Drug Design Data Resource (D3R) Grand Challenge provided a unique opportunity to prospectively test optimal strategies for virtual screening in these type of targets: heat shock protein 90 (HSP90), a protein with multiple ligand-induced binding modes; and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a kinase with a large flexible pocket. Using previously known co-crystal structures, we tested predictions from methods that keep the receptor structure fixed and used (a) multiple receptor/ligand co-crystals as binding templates for minimization or docking (“close”), (b) methods that align or dock to a single receptor (“cross”), and (c) a hybrid approach that chose from multiple bound ligands as initial templates for minimization to a single receptor (“min-cross”). Pose prediction using our “close” models resulted in average ligand RMSDs of 0.32 and 1.6 Å for HSP90 and MAP4K4, respectively, the most accurate models of the community-wide challenge. On the other hand, affinity ranking using our “cross” methods performed well overall despite the fact that a fixed receptor cannot model ligand-induced structural changes,. In addition, “close” methods that leverage the co-crystals of the different binding modes of HSP90 also predicted the best affinity ranking. Our studies suggest that analysis of changes on the receptor structure upon ligand binding can help select an optimal virtual screening strategy.  相似文献   

14.
Structural Chemistry - The striking structural resemblance between adenosine triphosphate (ATP) binding sites of glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase-2 (CDK-2) raises...  相似文献   

15.
Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.  相似文献   

16.
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein–ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein–ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.  相似文献   

17.
The activity of a biological compound is dependent both on specific binding to a target receptor and its ADME (Absorption, Distribution, Metabolism, Excretion) properties. A challenge to predict biological activity is to consider both contributions simultaneously in deriving quantitative models. We present a novel approach to derive QSAR models combining similarity analysis of molecular interaction fields (MIFs) with prediction of logP and/or logD. This new classification method is applied to a set of about 100 compounds related to the auxin plant hormone. The classification based on similarity of their interaction fields is more successful for the indole than the phenoxy compounds. The classification of the phenoxy compounds is however improved by taking into account the influence of the logP and/or the logD values on biological activity. With the new combined method, the majority (8 out of 10) of the previously misclassified derivatives of phenoxy acetic acid are classified in accord with their bioassays. The recently determined crystal structure of the auxin-binding protein 1 (ABP1) enabled validation of our approach. The results of docking a few auxin related compounds with different biological activity to ABP1 correlate well with the classification based on similarity of MIFs only. Biological activity is, however, better predicted by a combined similarity of MIFs + logP/logD approach.  相似文献   

18.
We have used SOM and grid 3D and 4D QSAR schemes for modeling the activity of a series of dihydrofolate reductase inhibitors. Careful analysis of the performance and external predictivities proves that this method can provide an efficient inhibition model.  相似文献   

19.
The k-nearest neighbor (kNN) approach to pattern recognition was used to evaluate a laser-based method of identifying pathogens based on aminopeptidase profiling. Suitability of the method was tested by evaluating the recognition accuracy for differentiation of four bacterial genera as well as four races within a single Species. Even though variations in profile replicates were relatively large, the kNN approach successfully differentiated these pathogens. Recognition accuracies of 100% and 92% were achieved for the differentiation of genera and races, respectively. Feature-selection algorithms were used which allowed the rejection of features which did not add useful information towards identification or improve recognition accuracy. Identification of races was facilitated by constructing a data set comprised of only races of one species, because feature selection and weighting were strongly affected by the easily differentiated genera. Methods used for feature selection and weighting were also evaluated.  相似文献   

20.
Comparative molecular field analysis (CoMFA) with partial least squares (PLS) is one of the most frequently used tools in three-dimensional quantitative structure-activity relationships (3D-QSAR) studies. Although many successful CoMFA applications have proved the value of this approach, there are some problems in its proper application. Especially, the inability of PLS to handle the low signal-to-noise ratio (sample-to-variable ratio) has attracted much attention from QSAR researchers as an exciting research target, and several variable selection methods have been proposed. More recently, we have developed a novel variable selection method for CoMFA modeling (GARGS: genetic algorithm-based region selection), and its utility has been demonstrated in the previous paper (Kimura, T., et al. J. Chem. Inf. Comput. Sci. 1998, 38, 276-282). The purpose of this study is to evaluate whether GARGS can pinpoint known molecular interactions in 3D space. We have used a published set of acetylcholinesterase (AChE) inhibitors as a test example. By applying GARGS to a data set of AChE inhibitors, several improved models with high internal prediction and low number of field variables were obtained. External validation was performed to select a final model among them. The coefficient contour maps of the final GARGS model were compared with the properties of the active site in AChE and the consistency between them was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号