首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用一锅法合成的负载于聚酰胺酸盐上的铂钯纳米催化剂,可以通过调节溶液的p H值实现催化剂与反应体系的有效分离和循环利用.准均相的铂钯催化剂应用于水相中卤代芳香族化合物的氢化脱卤反应,转化率达到99%以上,并且在重复使用5次后仍然保持很高的活性.铂钯双金属催化剂拥有比单一金属铂或者钯更高的催化活性,这主要是由于铂钯合金在催化反应时具有协同效应.利用X射线衍射仪(XRD),透射电子显微镜(TEM)等方法对催化剂进行了表征.数据表明铂钯纳米粒子负载于聚酰胺酸上以后可以在水溶液中稳定存在并且处于均匀的分布状态,纳米粒子尺寸约为4 nm.  相似文献   

2.
Rutkowska  I. A.  Krakowka  P.  Jarzebska  M.  Czarniecki  K.  Krech  M.  Sobkowicz  K.  Zdunek  K.  Galus  Z.  Kulesza  P. J. 《Russian Journal of Electrochemistry》2020,56(10):832-849
Russian Journal of Electrochemistry - Electrocatalytic activity of common noble metal (platinum, bimetallic platinum-ruthenium and palladium) nanoparticles (both unsupported and supported on Vulcan...  相似文献   

3.
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers. EDS and XPS indicated that the content of Au element was higher than that of Pt element in the nanoflowers. The bimetallic nanoflowers-modified electrode had electrochemical properties similar to those of bare gold and platinum electrodes. It also exhibited significant electrocatalytic activities toward oxygen reduction.  相似文献   

4.
We report the generalized synthesis of metal nanoparticles with liquid-like behavior. We introduce a thiol-containing ionic liquid, N,N-dioctyl-N-(3-mercaptopropyl)-N-methylammonium bromide, which serves as a ligand for platinum, gold, palladium, and rhodium nanoparticles. A rapid reduction using THF-soluble metal salts in the presence of the thiol generates nanoparticles with tunable sizes and size distributions. The as-synthesized nanoparticles are a solid and decompose before melting. Upon exchange of the halide anion for an amphiphilic sulfonate anion, however, the nanoparticles exhibit liquid-like properties at room temperature. The liquids have high metal loadings; for example, the 2.7 nm platinum nanoparticle liquid is 36% platinum by mass.  相似文献   

5.
A method for the formation of catalytically active functional electrode nanocomposites with bimetallic platinum—palladium nanoparticles supported on a polymer matrix is described. The phase composition of nanocomposites was examined by X-ray powder diffraction, scanning electron microscopy and cyclic voltammetry were also applied in the study.  相似文献   

6.
The synthesis and characterization of 1-3-nm diameter, structurally well-defined, bimetallic AuAg dendrimer-encapsulated nanoparticles (DENs) are reported. Three different bimetallic structures were examined: AuAg alloys synthesized by cocomplexation and subsequent reduction of dendrimer-encapsulated Au3+ and Ag+ and core/shell [Au](Ag) and [AuAg alloy](Ag) structures (for structured materials, brackets indicate the core metal and parentheses indicate the shell metal) synthesized by a sequential loading method. Depending on the shell metal and its oxidation state, the AuAg nanoparticles can be extracted from the dendrimer into an organic phase using different surfactants. This provides a means for analyzing the composition of the shell. UV-vis, TEM, and single-particle X-ray energy dispersive spectroscopy (EDS) were used to characterize the bimetallic DENs before and after extraction and show that the extraction step does not alter the size or composition of the bimetallic nanoparticles.  相似文献   

7.
Catalysts containing cerium oxide as a support and platinum and palladium as active components for the low-temperature oxidation of carbon monoxide were studied. The catalysts were synthesized in accordance with original procedures with the use of palladium and platinum complex salts. Regardless of preparation procedure, the samples prepared with the use of only platinum precursors did not exhibit activity at a low temperature because only metal and oxide (PtO, PtO2) nanoparticles were formed on the surface of CeO2. Unlike platinum, palladium can be dispersed on the surface of CeO2 to a maximum extent up to an almost an ionic (atomic) state, and it forms mixed surface phases with cerium oxide. In a mixed palladium-platinum catalyst, the ability of platinum to undergo dispersion under the action of palladium also increased; as a result, a combined surface phase with the formula Pd x Pt y CeO2 ? δ, which exhibits catalytic activity at low temperatures, was formed.  相似文献   

8.
The structure of model electrode materials broadly used in electrocatalysis (platinized platinum, palladized platinum, platinized gold) is studied by x-ray diffractometry, scanning electron microscopy, and transmission electron microscopy. Disperse platinum and palladium coatings less than 1 m thick are obtained by potentiostatic or galvanostatic deposition from solutions of complex chloride salts. Lattice parameters of disperse metals are shown to be considerably smaller than those of bulky crystals. Some new tendencies of variations in structural parameters with the deposition potential are revealed. Special attention is paid to a reliable determination of the size of regions of coherent scattering (ROCS) and microdistortion; in connection with this, results of approximation of reflections by various functions and a harmonic analysis of reflections are compared. The latter are used for constructing ROCS distributions by size. Good agreement is found with the STM data for platinum deposits obtained earlier. Conversely, in the case of palladium deposits, ROCS are smaller than the particle size in an outer layer of the deposit by the STM data. This result is interpreted in terms of strong concrescence of palladium nanoparticles. To determine the true surface areas of deposits and estimate continuousness of covering the support by the deposit and regularities of platinum aging on gold in conditions of potential cycling, a voltammetry method is applied.  相似文献   

9.
The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium–hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero‐interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell‐type bimetallic nanoparticles. It is proposed that the potential formed in the hetero‐interface stabilizes hydrogen atoms rather than interstitials in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.  相似文献   

10.
杨斌  徐筠 《分子催化》1996,10(5):339-344
制备了聚N-乙烯基-2-吡咯烷酮PVP负载钯催化剂Pd/PVP及各种双金属催化剂(1-m)Pd-mM/PVP,并用于硝基芳烃的加氢还原中,其中Pd/PVP中加入H2PtCl6的效果最佳,碱的用量、溶剂和Pd、Pt的比例都对催化剂的活性有明显的影响,双金属催化剂0.80Pd-0.20Pt/PVP在温和条件下能高活性,高选择性地催化硝基芳烃还原,得到相应的芳胺。  相似文献   

11.
光化学合成Au核@Pd壳复合纳米粒子及其表征   总被引:1,自引:0,他引:1  
在PEG-丙酮溶液体系中, 采用紫外光辐射还原Au(Ⅲ), Pd(Ⅱ)离子混合物和以Au晶种为核、紫外光辐射还原Pd(Ⅱ)使其沉积在Au晶种表面上这两种方法, 合成了Au核@Pd壳复合纳米粒子. 通过改变Au(Ⅲ)离子或Au晶种对Pd(Ⅱ)离子的摩尔比调节复合粒子的尺寸和Pd壳厚度, 分别获得了直径范围为5.6~4.6 nm和4.6~6.2 nm的复合粒子. 利用UV-Vis吸收光谱、TEM、HR-TEM和XPS等表征手段, 证明了合成的纳米粒子为核-壳复合结构. 研究了Au@Pd纳米粒子的直径随溶液中Au(Ⅲ)/Pd(Ⅱ)摩尔比的改变而变化的规律; 对Au核向Pd壳的供电子作用以及复合粒子的光化学形成机理进行了讨论.  相似文献   

12.

PtCu/C electrocatalysts with similar compositions but different distributions of components in bimetallic nanoparticles were obtained by simultaneous and sequential reduction of copper(II) and platinum( IV) in a carbon suspension. The catalyst obtained by multistage synthesis while sequentially increasing the Pt(IV) concentration in the precursor solution added at each stage showed the highest stability and activity in oxygen electroreduction in acidic media. This catalyst was least liable to selective dissolution of copper during its operation. The influence of the architecture of bimetallic PtCu nanoparticles on the electrochemical behavior of the catalysts is due to the peculiarities of the structure rearrangement of nanoparticles during the enrichment of the protective surface layer with platinum.

  相似文献   

13.
A high-temperature and high-pressure flow-reactor system was applied to the synthesis of monometallic ruthenium (Ru) nanoparticles and platinum/ruthenium (Pt/Ru) bimetallic nanoparticles using the thermal reduction of ruthenium ion (Ru(III)) and the mixture of platinum (Pt(IV)) and ruthenium ions in water and ethanol mixture in the presence of poly(N-vinyl-2-pyrrolidone). Monometallic Ru nanoparticles with an average diameter of ca. 2 nm were synthesized above 200 degrees C at 30 MPa. The monometallic Ru nanoparticles tended to make large aggregates in colloidal dispersions. By the reduction of the mixture solution of Pt(IV) and Ru(III) in water and ethanol above 200 degrees C at 30 MPa, Pt/Ru bimetallic nanoparticles with an average diameter of ca. 2.5 nm were synthesized with relatively small size distribution. The EXAFS spectra for the Pt/Ru bimetallic particles indicated that the particle possesses metallic bonds between Pt and Ru atoms in contrast to the case of the nanoparticles produced by thermal reduction under ambient pressure at 100 degrees C [M. Harada, N. Toshima, K. Yoshida, S. Isoda, J. Colloid Interface Sci. 283 (2005) 64], and that the Pt/Ru bimetallic particle has a Pt-core/Ru-shell structure.  相似文献   

14.
Dispersed silver/palladium (Ag/Pd) nanoplatelets were prepared by delivering in parallel solutions of mixed metal nitrates and L-ascorbic acid into a nitric acid solution containing Arabic gum. The shape and size of bimetallic nanoparticles varied with the silver/palladium weight ratio and the concentration of nitric acid. The optimum conditions for platelets formation were a palladium content of ~2.0 wt.% and nitric acid concentrations above 1.0 mol dm(-3). The data presented show that both parameters play a critical role in the nucleation and growth of AgPd particles. A mechanism explaining the formation of the bimetallic nanoplatelets is proposed.  相似文献   

15.
Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.  相似文献   

16.
Dendrimer-metal (silver, platinum, and palladium) nanocomposites are prepared in aqueous solutions containing poly(amidoamine) (PAMAM) dendrimers with surface amino groups (generations 3, 4, and 5) or poly(propyleneimine) (PPI) dendrimers with surface amino groups (generations 2, 3, and 4). The particle sizes of the metal nanoparticles obtained are almost independent of the generation as well as the concentration of the dendrimer for both the PAMAM and the PPI dendrimers; the average sizes of silver, platinum, and palladium nanoparticles are 5.6-7.5, 1.2-1.6, and 1.6-2.0 nm, respectively. It is suggested that the dendrimer-metal nanocomposites are formed by adsorbing the dendrimers on the metal nanoparticles. Studies of the reduction reaction of 4-nitrophenol by these nanocomposites show that the rate constants are very similar between PAMAM and PPI dendrimer-silver nanocomposites, whereas the rate constants for the PPI dendrimer-platinum and -palladium nanocomposites are greater than those for the corresponding PAMAM dendrimer nanocomposites. In addition, it is found that the rate constants for the reduction of 4-nitrophenol involving all the dendrimer-metal nanocomposites decrease with an increase in the dendrimer concentrations, and the catalytic activity of dendrimer-palladium nanocomposites is highest.  相似文献   

17.
Poly(vinylbenzyl chloride) nanospheres prepared via emulsion polymerization were surface functionalized with viologen moieties. Several methods were investigated to achieve the desired high surface concentration of viologen moieties with minimal aggregation of the nanospheres. The viologen-functionalized nanospheres were used for photoinduced reduction of gold ions and platinum ions, either individually, simultaneously or sequentially, to result in the formation of well-distributed Au-Pt nanoparticles of a few nanometers on the surface of the nanospheres. UV-visible absorption spectroscopy and XPS analyses of these bimetallic nanoparticles were carried out. The reaction time and the sequence of the reduction process play an important role in determining the composition of the bimetallic nanoparticles. High-resolution transmission electron microscopy analysis reveals the highly crystalline nature of the bimetallic nanoparticles.  相似文献   

18.
Engineering the size, composition, and morphology of platinum‐based nanomaterials can provide a great opportunity to improve the utilization efficiency of electrocatalysts and reinforce their electrochemical performances. Herein, three‐dimensional platinum–palladium hollow nanospheres with a dendritic shell (PtPd‐HNSs) are successfully fabricated through a facile and economic route, during which SiO2 microspheres act as the hard template for the globular cavity, whereas the triblock copolymer F127 contributes to the formation of the dendritic shell. In contrast with platinum hollow nanospheres (Pt‐HNSs) and commercial platinum on carbon (Pt/C) catalyst, the novel architecture shows a remarkable activity and durability toward the methanol oxidation reaction (MOR) owing to the coupled merits of bimetallic nanodendrites and a hollow interior. As a proof of concept, this strategy is also extended to trimetallic gold–palladium–platinum hollow nanospheres (AuPdPt‐HNSs), which paves the way towards the controlled synthesis of other bi‐ or multimetallic platinum‐based hollow electrocatalysts.  相似文献   

19.
PtSn bimetallic nanoparticles with different particle sizes (1-9 nm), metal compositions (Sn content of 10-80 mol %), and organic capping agents (e.g., amine, thiol, carboxylic acid and polymer) were synthesized by colloidal chemistry methods. Transmission electron microscopy (TEM) measurements show that, depending on the particle size, the as-prepared bimetallic nanocrystals have quasi-spherical or faceted shapes. Energy-dispersive X-ray (EDX) analyses indicate that for all samples the signals of both Pt and Sn can be detected from single nanoparticles, confirming that the products are actually bimetallic but not only a physical mixture of pure Pt and Sn metal nanoparticles. X-ray diffraction (XRD) measurements were also conducted on the bimetallic particle systems. When compared with the diffraction patterns of monometallic Pt nanoparticles, the bimetallic samples show distinct shifts of the Bragg reflections to lower degrees, which gives clear proof of the alloying of Pt with Sn. However, a quantitative analysis of the lattice parameter shifts indicates that only part of the Sn atoms are incorporated into the alloy nanocrystals. This is consistent with X-ray photoelectron spectroscopy (XPS) measurements that reveal the segregation of Sn at the surfaces of the nanocrystals. Moreover, short PtSn bimetallic nanowires were synthesized by a seed-mediated growth method with amine-capped bimetallic particles as precursors. The resulting nanowires have an average width of 2.3 nm and lengths ranging from 5 to 20 nm.  相似文献   

20.
Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter~1–2?μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction.
Figure
Platinum/palladium bimetallic nanoflowers are immobilised on a porous polymer monolith for use as a flow-through microreactor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号