首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expressions of P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs) in the blood-brain barrier (BBB) were regulated by verapamil and probenecid. The two protein interveners inhibited the efflux-pumping capability for permeating calcein-AM in the monolayer of human brain-microvascular endothelial cells (HBMECs). The immunochemical staining revealed that the order in the integrity of tight junction was human astrocyte (HA)-regulated HBMECs>HBMECs cultured with 100% astrocyte-conditioned medium (ACM)>HBMECs cultured with 50% ACM>HBMECs. The viability of HBMECs was higher than 94% when the concentrations of verapamil and probenecid were lower than 50 μM and 1000 μM, respectively. The culture using ACM negligibly affected the activity of P-gp and MRPs on HBMECs after the suppression with verapamil and/or probenecid. However, the double culture of HA-regulated HBMECs promoted the quantity of P-gp and MRPs and reduced the endocytosis of calcein-AM. The inhibitive and endocytotic analysis can unveil the role of HAs in the protein expressions on HBMECs for establishing a reliable BBB model in vitro.  相似文献   

2.
Booth R  Kim H 《Lab on a chip》2012,12(10):1784-1792
The blood-brain barrier (BBB), a unique selective barrier for the central nervous system (CNS), hinders the passage of most compounds to the CNS, complicating drug development. Innovative in vitro models of the BBB can provide useful insights into its role in CNS disease progression and drug delivery. Static transwell models lack fluidic shear stress, while the conventional dynamic in vitro BBB lacks a thin dual cell layer interface. To address both limitations, we developed a microfluidic blood-brain barrier (μBBB) which closely mimics the in vivo BBB with a dynamic environment and a comparatively thin culture membrane (10 μm). To test validity of the fabricated BBB model, μBBBs were cultured with b.End3 endothelial cells, both with and without co-cultured C8-D1A astrocytes, and their key properties were tested with optical imaging, trans-endothelial electrical resistance (TEER), and permeability assays. The resultant imaging of ZO-1 revealed clearly expressed tight junctions in b.End3 cells, Live/Dead assays indicated high cell viability, and astrocytic morphology of C8-D1A cells were confirmed by ESEM and GFAP immunostains. By day 3 of endothelial culture, TEER levels typically exceeded 250 Ω cm(2) in μBBB co-cultures, and 25 Ω cm(2) for transwell co-cultures. Instantaneous transient drop in TEER in response to histamine exposure was observed in real-time, followed by recovery, implying stability of the fabricated μBBB model. Resultant permeability coefficients were comparable to previous BBB models, and were significantly increased at higher pH (>10). These results demonstrate that the developed μBBB system is a valid model for some studies of BBB function and drug delivery.  相似文献   

3.
The expression of human ornithine decarboxylase (ODC) and permeability of saquinavir (SQV) across the blood-brain barrier were studied using nanoparticles (NPs) composed of poly(lactide-co-glycolide) (PLGA), poly-(γ-glutamic acid) (γ-PGA), and polyethyleneimine (PEI). SQV was encapsulated in the particle core to traverse a monolayer of human brain-microvascular endothelial cells (HBMECs) with the regulation of human astrocytes under an electromagnetic field (EMF). An increase in the weight percentage of PEI enhanced the particle size, zeta potential, and permeability of SQV. However, the viability of HBMECs reduced when the weight percentage of PEI increased. In addition, an increment in the molecular weight of γ-PGA enhanced the particle size and viability of HBMECs, and reduced the zeta potential. The permeability of SQV and expression of ODC were in the order: an EMF with amplitude modulation (AM)>an EMF with frequency modulation>no EMF. At 0.04% PEI, the AM EMF increased 2.38 times the uptake of NPs and 2.72 times the expression of ODC. The combination of PEI/γ-PGA/PLGA NPs and EMF can be an innovative strategy for delivering SQV into the brain.  相似文献   

4.
Electrokinetic and electrostatic properties of human brain-microvascular endothelial cells (HBMECs) with the uptake of l-arginine (Arg)-modified solid lipid nanoparticles (RSLNs) were investigated. The exposure of these HBMECs to radiofrequency electromagnetic field (EMF) was also considered. As compared with the original culture of HBMECs, the uptake of the biomimetic RSLNs induced smaller absolute values of electrophoretic mobility, zeta potential, Donnan potential, and fixed charge density. In addition, an increase in the coverage fraction of Arg on the external layers of the RSLNs reduced the electrical characteristics of HBMECs. An increase in the power of EMF also decreased the charge of RSLNs-incorporating HBMECs. On the contrary, softness of HBMECs was enhanced by an increased coverage fraction of Arg and an increased power of EMF. Electrophysiology of HBMECs can be efficiently mediated by the novel RSLNs and exposure to EMF through fluctuation and redistribution of the membrane charge.  相似文献   

5.
The hemagglutinin (HA) protein of the influenza virus binds to the host cell receptor in the early stage of viral infection. A change in binding specificity from avian 2-3 to human 2-6 receptor is essential for optimal human-to-human transmission and pandemics. Therefore, it is important to reveal the key factors governing the binding affinity of HA-receptor complex at the molecular level for the understanding and prediction of influenza pandemics. In this work, on the basis of ab initio fragment molecular orbital (FMO) method, we have carried out the interaction energy analysis of HA-receptor complexes to quantitatively elucidate the binding specificity of HAs to avian and human receptors. To discuss the binding property of influenza HA comprehensively, a number of HAs from human H1, swine H1, avian H3 and avian H5 viruses were analyzed. We performed detailed investigations about the interaction patterns of complexes of various HAs and receptor analogues, and revealed that intra-molecular interactions between conserved residues in HA play an important role for HA-receptor binding. These results may provide a hint to understand the role of conserved acidic residues at the receptor binding site which are destabilized by the electrostatic repulsion with sialic acid. The calculated binding energies and interaction patterns between receptor and HAs are consistent with the binding specificities of each HA and thus explain the receptor binding mechanism. The calculated results in the present analysis have provided a number of viewpoints regarding the models for the HA-receptor binding specificity associated with mutated residues. Examples include the role of Glu190 and Gln226 for the binding specificity of H5 HA. Since H5 HA has not yet been adapted to human receptor and the mechanism of the specificity change is unknown, this result is helpful for the prediction of the change in receptor specificity associated with forthcoming possible pandemics.  相似文献   

6.
Interfacial void-free Matrimid polyimide (PI) membranes filled with zeolites were prepared by introducing 2,4,6-triaminopyrimidine (TAP). TAP enhanced the contact of zeolite particles with polyimide chains presumably by forming hydrogen bonding between them. The threshold amount of TAP, needed to depress totally the void formation, varied with zeolite type in the order of zeolite 4A≈13X<NaY<5A<NaSZ390HUA. It was also observed that the threshold amount of TAP could be related with the number of external hydroxyl groups of zeolite particles. The void-free PI/zeolite 13X/TAP membrane showed the higher gas permeability for He, N2, O2, CO2 and CH4 with a little expense of permselectivity compared with the PI/TAP membrane, while the PI/zeolite 4A/TAP membrane showed the lower permeability but higher permselectivity. The facilitation ratios of the zeolite-filled PI membranes were strongly affected by the pore size of zeolites. In addition, the molecular sieving effect of zeolites seemed to take place when the kinetic diameter of gas penetrants approached the pore size of zeolites.  相似文献   

7.
The aim of this work was to ascertain, on a comparative basis, the compositional, structural and functional differences occurring between three humic acids (HAs), HA S1 (isolated from a Mediterranean brown soil), HA S2 (isolated from a Bavarian brown soil), and HA SR (a Suwannee River standard aquatic HA, purchased from IHSS), and to investigate the influence of their intrinsic properties on the types of binding mechanisms toward the pesticide rotenone. Original HAs and their corresponding HA–rotenone products, obtained by two different interaction protocols, were analyzed for elemental and functional group composition, and spectroscopic techniques, such as Fourier-transform infrared (FT IR) with Fourier self-deconvolution (FSD) and fluorescence both in the single-scan and in three-dimensional modes. The HA S1 sample appeared to be characterized by a greater aromaticity degree and lower polarity with respect to the HA S2, featured by a mixed aromatic/aliphatic character, whereas mainly aliphatic and acidic resulted the HA SR. The data obtained suggested that the low water-soluble, non-polar pesticide rotenone resulted preferentially adsorbed onto HAs by hydrophobic interaction, that was the prevailing mechanism in the order HA S1 > HA S2 >>> HA SR, whereas hydrogen bonds resulted predominant in the opposite order.  相似文献   

8.
Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L−1 resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs.  相似文献   

9.
The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann–Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood–brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM, measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has low permeability, 0.50 × 10−6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher, 1.86 × 10−5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help to develop new strategies for improved HPBCD effects after systemic administration.  相似文献   

10.
High performance size-exclusion chromatography (HPSEC) is useful for the molecular size separation of soil humic acids (HAs), but there is no method available for various HAs with different chemical properties. In this paper the authors propose a new preparative HPSEC method for various soil HAs. Three soil HAs with different chemical properties were fractionated by a Shodex OHpak SB-2004 HQ column with 10mM sodium phosphate buffer (pH 7.0)/acetonitrile (3:1, v/v) as an eluent. The HAs eluted within a reasonable column range time (12-25 min) without peak tailing. Preparative HPSEC chromatograms of these HAs indicated that non-size-exclusion effects were suppressed. The separated fractions were analyzed by HPSEC to determine their apparent molecular weights. These decreased sequentially from fraction 1 to fraction 10, suggesting that the HAs had been separated by their molecular size. The size-separated fractions of the soil HA were mixed to compare them with unfractionated HA. The analytical HPSEC chromatogram of the mixed HA was almost identical to that of the unfractionated HA. It appears that the HAs do not adsorb specifically to the column during preparative HPSEC. Our preparative HPSEC method allows for rapid and reproducible separation of various soil HAs by molecular size.  相似文献   

11.
The pore-forming activities of cyclic lipodepsipeptides (CLPs), syringopeptin 22A (SP22A) and syringomycin E (SRE) were compared on the human red blood cell (RBC) membrane and on bilayer lipid membranes (BLMs). SP22A above a concentration of 4 x 10(5) molecules/cell significantly increased the RBC membrane permeability for 86Rb. With electric current measurements on BLM, it was proved that like SRE, the SP22A formed two types of ion channels in the membrane, small and large, the latter having six times larger conductance and longer dwell time. Both CLPs formed clusters consisting of six small channels, and the channel-forming activity of SP22A is about one order of magnitude higher than that of SRE. A Hill coefficient of 2-3 estimated from the concentration dependence of these CLPs-induced lysis gave a proof of the pore oligomerization on RBCs. Transport kinetic data also confirmed that SP22A pores were oligomers of at least three monomers. While SRE pores were inactivated in time, no pore inactivation was observed with SP22A. The 86Rb efflux through SP22A-treated RBCs approached the tracer equilibrium distribution with a constant rate; a constant integral current was measured on the BLM for as long as 2.5 h as well. The partition coefficient (Kp = 2 x 10(4) l/mol) between the RBC membrane and the extracellular space was estimated for SRE to be at least six times higher than that for SP22A. This finding suggested that the higher ion permeability of the SP22A-treated cells compared to that of SRE was the result of the higher pore-forming activity of SP22A.  相似文献   

12.
A method of high-performance size-exclusion chromatography (HPSEC) for a wide variety of soil humic acids (HAs) was developed. Two types of soil HAs (Cambisol and Andosol HAs), which have substantially different chemical properties, showed different effects of salt and organic solvent concentrations in the eluent on chromatograms. A Shodex OHpak SB-805 HQ column with 10 mM sodium phosphate buffer (pH 7.0) containing 25% of acetonitrile (v/v) was found to be applicable for different HAs, and showed high reproducibility and recovery (87.0 - 94.5%). The Cambisol HA was fractionated into five fractions using an ultrafiltration with different molecular-weight cut-offs. The order of the molecular weights of the five fractions calculated from the HPSEC analysis corresponded to that defined by ultrafiltration. This supported the reliability of the method.  相似文献   

13.
This study evaluated the feasibility of using commercially available immortalized cell lines in building an in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Astrocytes-derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel biomimetic basement membrane for the endothelial cells to form tight junctions. Trans-Endothelial Electrical Resistance (TEER) and solute mass transport studies quantitatively evaluated the tight junction formation. Immuno-fluorescence microscopy and Western blot analysis qualitatively verified the expression of occludin, one of the tight junction proteins on the samples. Experimental data from a total of 13 experiments conclusively showed that the novel BBB in vitro co-culture model with aECM (CO + aECM) is promising in terms of establishing tight junction formation represented by TEER values, transport profiles, and tight junction protein expression when compared with traditional co-culture (CO) model setup or the endothelial cells cultured alone (EC). In vitro colorimetric sulforhodamine B (SRB) assay also revealed that the “CO + aECM” samples resulted in less cell loss on the basal sides of the insert membranes than traditional co-culture models. Our novel approach using immortalized cell lines with the addition of aECM was proven to be a feasible and repeatable alternative to the traditional BBB in vitro modeling.  相似文献   

14.
Hydroxamic acids (HAs) perform tasks in medicine and industry that require bidentate metal binding. The two favored conformations of HAs are related by rotation around the C(=O)–N bond. The conformations are unequal in stability. Recently, we reported that the most stable conformation of a small secondary HA in water places the oxygen atoms anti to one another. The barrier to C–N bond rotation may therefore modulate metal binding by secondary HAs in aqueous media. We have now determined the activation barrier to C–N rotation from major to minor conformation of a small secondary HA in D2O to be 67.3 kJ/mol. The HA rotational barrier scales with solvent polarity, as is observed in amides, although the HA barrier is less than that of a comparable tertiary amide in aqueous solution. Successful design of new secondary HAs to perform specific tasks requires solid understanding of rules governing HA structural behavior. Results from this work provide a more complete foundation for HA design efforts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and agreement with the random coil structural model has been shown.  相似文献   

16.
The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.  相似文献   

17.
Porous polyimide (PI) membranes are widely used in separation processes because of their excellent thermal and mechanical properties. However, the applications of porous PI membranes are limited in the nanofiltration range. In this study, porous PI membranes with through-holes have been successfully fabricated by the novel multiple solvent displacement method. This new method requires only a porous polyamic acid (PAA) membrane, which was prepared by immersing PAA film in N-methylpyrrolidoneebk; (NMP) prior to immersing it in a mixed solvent consisting of NMP and a poor solvent, followed by immersion only in poor solvent. The pore size, morphology, porosity, and air permeability demonstrated that the fabricated PI membranes had a uniformly porous structure with through-holes over their surface. This new method enabled control of pore size (3–11 μm) by selecting a suitable poor solvent. This multiple solvent displacement method is highly versatile and promising for the fabrication of porous PI membranes.  相似文献   

18.
The main goal of this work was to study the structural transformation of humic acids (HAs) under the influence of selected strains of fungi (Aspergillus niger and Paecilomyces lilacinus) and bacteria (Bacillus sp., Paenibacillus polymyxa and Bacillus amyloliquefaciens) with/without the presence of NPK fertilizers. Two-year experiments were conducted on two different soils and HAs isolated from these soils were examined for structure, humification degree, and quantity using fluorescence and UV-Vis spectroscopy, elemental analysis, and extraction methods. Results showed that the applied additives contributed to the beneficial transformation of HAs, but effects differed for various soils. HAs from silty soil with higher organic carbon content showed simplification of their structure, and decreases in humification, molecular weight, and aromaticity under the influence of fungi and bacteria without NPK, and with NPK alone. With both fungi and NPK, increases in O/H and O/C atomic ratios indicated an increase in the number of O-containing functional groups. HAs from sandy soil did not show as many significant changes as did those from silty soil. Sandy soil exhibited a strong decline in HA content in the second year that was reduced/neutralized by the presence of fungi, bacteria, and NPK. Periodically observed fluorescence at ~300 nm/450 nm reflected formation of low-molecular HAs originating from the activity of microorganisms.  相似文献   

19.
聚偏氟乙烯-Nafion共混膜的制备及阻醇质子导电性能研究   总被引:7,自引:0,他引:7  
直接甲醇燃料电池 (Directmethanolfuelcell,MDFC)以高效、清洁和燃料储运方便等优点成为一类极具发展潜力的新型动力源 .但目前DMFC中普通使用的全氟磺酸膜 (如NafionTM 系列膜 )阻醇性能太差 ,导致大量甲醇从阳极穿过膜直接透到阴极 ,造成燃料的浪费和电池整体性能的下降 .据文献报道 ,即使甲醇浓度低到 1mol L ,也有近40 %的醇透过膜 .缺乏高性能的阻醇质子导电聚合物电解质膜是制约DMFC发展的瓶颈之一 .已有一些研究人员致力于新型膜材料的开发 ,如有人研制了聚苯并咪唑膜[1] 及各种掺杂…  相似文献   

20.
Alterations in the structural features of humic acids (HAs) in a steel slag-compost fertilizer for supplying soluble Fe(II) to barren ground in coastal areas were monitored during a 6-month period of fertilization. HAs, the major organic fractions in the fertilizer, were extracted at different periods of time (2, 4 and 6 months) in the absence and presence of steel slag. To focus on the polymeric structure of the HA-backbone and the organic fractions, which are sorbed onto the HA-polymeric matrix (e.g., lipids), the extracted HA samples were analyzed by pyrolysis-gas chromatography/mass spectrometry under conditions where the sample is methylated with tetramethylammonium hydroxide (TMAH-py-GC/MS). The structural features analyzable by TMAH-py-GC/MS for the HA were dramatically altered in the presence of steel slag during the fertilization period. The major modification involved a decrease in phenolic moieties and a significant increase in the sulfur-containing pyrolysate compounds. These results indicate that the steel slag has a significant effect in altering the structure of HA in the fertilizer. TMAH-py-GC/MS analysis of the HAs indicated that the sulfur in the HAs was present in an organic form and not as elemental sulfur. Significant increases in the levels of biomarker fatty acids (iso- and anteiso-C15:0 and C17:0 carboxylic acids), which are related to the activity of sulfate reducing bacteria, suggests that the significant alterations in the HA structures in the presence of steel slag can be attributed to the sulfurization of organic matter in the fertilizer to form hydrogen polysulfides by the reduction of sulfate ions in seawater and/or steel slag via microbial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号