首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The infectious disease burden imposed by trypanosomatidae family continues to create burden in countries that are least equipped to bring new medicines to the clinic. For sickness caused by this family of parasites (African trypanosomiasis, Chagas disease, and leishmaniasis) no vaccines are available, and currently available drugs suffer from insufficient efficacy, excessive toxicity, and steady loss of effectiveness due to resistance. Availability of the genome sequence of pathogens of this family offers a unique avenue for the identification of novel common drug targets for all three pathogens. Sirtuin family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases are remarkably conserved throughout evolution from archaebacteria to eukaryotes and plays an important role in trypanosomatidae biology and virulence. In order to gain insight for selective drug design, three-dimensional (3D) models of L. major, L. infantum, T. brucie, and T. cruzi sirtuin were constructed by homology modeling and compared with human sirtuin. The molecular electrostatic potentials and cavity depth analysis of these models suggest that the inhibitor binding catalytic domain has various minor structural differences in the active site of trypanosomal and human sirtuin, regardless of sequence similarity. These studies have implications for designing effective strategies to identify inhibitors that can be developed as novel broad-spectrum antitrypanosomal drugs.  相似文献   

2.
It has recently been reported that the eelpout Zoarces viviparus synthesizes a family of antifreeze proteins (AFP) similar in sequence to type III AFPs. A method has been set up to separate these antifreeze proteins from blood serum of this teleost species. A total of nine proteins with antifreeze activity have been isolated, several to a purity suited for NMR experiments. One of the proteins, Zvafp13, has been subject to partial structure determination by NMR. 1D- and 2D-H NMR analyses were carried out. In the 1D-experiments it was observed that the protein contained 28 slow-exchanging amides, suggesting a compact structure. The 2D-experiments were utilized to assign observed signals to specific amino acids. From TOCSY- and NOESY-experiments 35 out of a total of 66 amino acids were assigned. The amide exchange pattern, protein primary sequence, chemical shifts and NOE-cross-peaks between amides and -protons in the -sheets suggest that Zvafp13 structurally resembles the recombinant type III AFP rQAE m1.1.  相似文献   

3.
Laccases: structure, reactions, distribution   总被引:3,自引:0,他引:3  
Laccases (EC 1.10.3.2, p-diphenol: dioxygen oxidoreductases) are multi-copper proteins that use molecular oxygen to oxidize various aromatic and non-aromatic compounds by a radical-catalyzed reaction mechanism. The enzymes are involved in the pathogenicity, immunity and morphogenesis of organisms and in the metabolic turnover of complex organic substances such as lignin or humic matter. Owing to their high non-specific oxidation capacity, laccases are useful biocatalysts for diverse biotechnological applications. Until recently, laccases were only found in eukaryotes (fungi, higher plants, insects), but now there is strong evidence for their widespread distribution in prokaryotes and the first crystal structure of a bacterial laccase is already available. Phylogenetically, laccases are members of the multi-copper protein family including ascorbate oxidase, ceruloplasmin and bilirubin oxidase.  相似文献   

4.
《Physica A》2006,368(2):595-606
Investigations into the nature of sequence and structural conservation underlying protein folds have recently yielded profound insights into the mechanism of protein folding and stability. Combining this avenue of research with principles being pioneered in the field of network science holds the promise to further extend the boundaries of our knowledge. In this report we propose that critical determinants of a protein's native topology are encoded by a conserved network of interactions between amino acids from geographically important positions. This hypothesis is based on the novel elucidation of a conserved network of long-range interactions within a set of proteins that share a Greek-key topology and similar chain length, but differ in secondary structure composition, function and sequence. Exploratory macromolecular simulations using the conserved networks as constraints were successful in generating the gross native-like topology from a random linear coil for each of the model proteins. The results indicate that the conserved network contains governing features and supports the idea that the geographical location of these residue interactions is a pivotal feature underlying their conservation. The partially folded model proteins also display a clear scale-free distribution of long-range interactions. To further test the hypothesis, the network parameter betweeness-centrality was calculated for the protein structure networks of our model proteins and highlights two structural elements as particularly vital to the structural stability of the network topology.  相似文献   

5.
《Physica A》2005,350(1):52-62
The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein–protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein–protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein–protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.  相似文献   

6.
We argue that protein native state structures reside in a novel “phase” of matter which confers on proteins their many amazing characteristics. This phase arises from the common features of all globular proteins and is characterized by a sequence-independent free energy landscape with relatively few low energy minima with funnel-like character. The choice of a sequence that fits well into one of these predetermined structures facilitates rapid and cooperative folding. Our model calculations show that this novel phase facilitates the formation of an efficient route for sequence design starting from random peptides.  相似文献   

7.
朱少茗  喻祖国  Ahn Vo 《中国物理 B》2011,20(1):10505-010505
Family identification is helpful for predicting protein functions. It has been known from the literature that longer sequences of base pairs or amino acids are required to study patterns in biological sequences. Since most protein sequences are relatively short, we randomly concatenate or link the protein sequences from the same family or superfamily together to form longer protein sequences. The 6-letter model, 12-letter model, 20-letter model, the revised Schneider and Wrede scale hydrophobicity, solvent accessibility and stochastic standard state accessibility are used to convert linked protein sequences into numerical sequences. Then multifractal analyses and wavelet analysis are performed on these numerical sequences. The parameters from these analyses can be used to construct parameter spaces where each linked protein is represented by a point. The four classes of proteins, namely the α,β, α+βand α /β classes, are then distinguished in these parameter spaces. The Fisher linear discriminant algorithm is used to assess the discriminant accuracy. Numerical results indicate that the discriminant accuracies are satisfactory in separating these classes. We find that the linked proteins from the same family or superfamily tend to group together and can be separated from other linked proteins. The methods are helpful for identifying the family of an unknown protein.  相似文献   

8.
Although therapeutically active proteins are highly efficacious, their content in protective nanoparticles is often too low to elicit adequate plasma levels. A strategy to increase protein loading is the in-situ generation of calcium phosphate as a protein adsorbent. To verify this approach, a highly sensitive and reliable fluorimetric method for quantification of incorporated fluorescein-labelled bovine serum albumin (FITC-BSA) as a model protein drug was developed. Dequenching the fluorescein label by pronase E, which digests the protein backbone, and dissolving the nanoparticle matrix in acetonitrile enabled FITC-BSA quantification in the nanogram per milliliter range. This test was confirmed by a second assay involving alkaline hydrolysis of FITC-BSA and the matrix. Nanoparticles prepared with calcium phosphate contained 40 µg FITC-BSA/mg and nanoparticles without calcium phosphate only 15 µg FITC-BSA/mg, representing a 2.7-fold increase in model protein loading. In this work the nanoparticle preparation procedure was optimized in terms of size for administration in the inner ear, but the range of applications is not limited.  相似文献   

9.
Summary A novel lectin, PPL, was isolated from the mantle of penguin wing oyster (Pteria penguin) by affinity chromatography on mucin-Sepharose 4B and cation exchange chromatography on HiTrap SP. This lectin was estimated to be a 21-kDa monomer by gel filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted time of flight (MALDI-TOF) mass spectrometry. However, dynamic light scattering experiments revealed that a non-covalently linked dimer formed under high salt conditions (500 mM NaCl). Interestingly, PPL showed an increasing hemagglutinating activity with increasing salt concentration. The amino acid sequence of PPL was determined by direct protein sequence analysis and cDNA cloning. The 167-amino acid sequence included 24 lysine residues and had two tandemly repeated homologous domains (residues 20–78 and 107–165) with 44% internal homology. PPL showed sequence homology to L-rhamnose-binding lectins from fish eggs and a D-galactose-binding lectin from sea urchin eggs, with sequence identities in the range 37–48%. PPL agglutinated various animal erythrocytes independently of calcium ions. The minimum concentration of PPL needed to agglutinate rabbit erythrocytes was 0.5 μg/ml, and the most effective saccharides to inhibit the hemagglutination were D-galactose, methyl-D-galactopyranoside and N-acetyl-D-lactosamine. Lactose also inhibited hemagglutination, but L-rhamnose did so only weakly despite the sequence homology with trout egg L-rhamnose-binding lectins. The carbohydrate-binding specificity of PPL was further examined by frontal affinity chromatography using 37 different pyridylaminated oligosaccharides. PPL was found to have strong binding affinity for various oligosaccharides that have Galβ1-4Glu/GlcNAc, Galβ1-3GalNAc/GlcNAc and Galα 1-4Gal moieties in their structure. PPL had a high thermal stability and retained 50% of its hemagglutinating activity after incubation at 70°C for 100 min. It agglutinated some Gram-negative bacteria by recognizing lipopolysaccharides. Together, these results suggest that PPL is a new member of the trout egg lectin family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity. We conclude that the trout egg lectin family proteins, in particular their carbohydrate recognition domains, have acquired diverse carbohydrate-binding specificities during molecular evolution.  相似文献   

10.
11.
Bone and cartilage are connective tissues with distinct organic matrix (collagen and non‐collagenous proteins) composition facilitating their biological function. Proteoglycans (PGs), a member of the non‐collagenous proteins fulfill functions that are determined by both their core protein and their glycosaminoglycan chains. The purpose of the present study was to identify Raman bands that are representative of PG concentration and may be used in both bone and cartilage tissues. To achieve this goal, we analyzed a series of reference PGs and collagens, as well as turkey leg tendon to verify the laser polarization independency of the identified bands. Additionally, the applicability of these bands in both cartilage and bone tissue simultaneously was tested in a healthy femoral head by Raman imaging and hierarchical cluster analysis to describe the distribution of PGs at the micron level from articular cartilage to subchondral bone. The results of the study show that the Raman band ~1375 cm−1 can be used as a PGs marker band in both cartilage and bone. Moreover, articular cartilage has a lower content of organic matrix (mostly type II collagen), while the middle and deep transitional zone haves a higher concentration of PGs. The calcified cartilage is characterized by a lower content of PGs and total organic matrix (estimated from the integrated area of the amide III band). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The character of forming long-range contacts affects the three-dimensional structure of globular proteins deeply. As the different ability to form long-range contacts between 20 types of amino acids and 4 categories of globular proteins, the statistical properties are thoroughly discussed in this paper. Two parameters NC and ND are defined to confine the valid residues in detail. The relationship between hydrophobicity scales and valid residue percentage of each amino acid is given in the present work and the linear functions are shown in our statistical results. It is concluded that the hydrophobicity scale defined by chemical derivatives of the amino acids and nonpolar phase of large unilamellar vesicle membranes is the most effective technique to characterise the hydrophobic behavior of amino acid residues. Meanwhile, residue percentage Pi and sequential residue length Li of a certain protein i are calculated under different conditions. The statistical results show that the average value of Pi as well as Li of all-α proteins has a minimum among these 4 classes of globular proteins, indicating that all-α proteins are hardly capable of forming long-range contacts one by one along their linear amino acid sequences. All-β proteins have a higher tendency to construct long-range contacts along their primary sequences related to the secondary configurations, i.e. parallel and anti-parallel configurations of β sheets. The investigation of the interior properties of globular proteins give us the connection between the three-dimensional structure and its primary sequence data or secondary configurations, and help us to understand the structure of protein and its folding process well.  相似文献   

13.
三肽是蛋白质的基本组成模块, 具有重要生理功能. 解析其结构对于更大的肽及蛋白质研究具有重要意义. 基于二面角组合规则, 结合键旋转手段, 提出一种获取三肽构象系综的从头算量子化学方法. 使用该方法对八个目标三肽的势能面进行彻底搜索, 将所得结果与以前的预测方法及蛋白质数据库(PDB) 提取的结构进行比较.结果表明, 新方法搜索到了最完整的三肽构象系综. 此外证明了 PDB 结构存在缺陷, 遗漏了大部分中低能区的重要构象. 将新获取的三肽结构用于红外光谱研究, 理论结果与实验数据符合得更精准.  相似文献   

14.
A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications.  相似文献   

15.
Some times high uranium contents are present in the phosphate rocks used for the manufacturing of fertilizer. In view of the harmful effects on human health due to the processing and use of such fertilizers in agriculture, it is important to analyse phosphate rocks for uranium content determination. Ten representative rock samples from Kakul phosphate deposit exposed near Abbotabad, Pakistan which are used for the manufacturing of fertilizers were studied for uranium content determination with the help of fission track and neutron activation analysis techniques. Each sample was split into three parts. The first and second parts (solid slabs and pellets) were subjected to fission track analysis, while the third part was analysed using neutron activation analysis technique for comparison. On the average a uranium content of 37 ppm was found in the phosphate rocks. The results of uranium content determinations with the help of fission track and neutron activation analysis techniques show a remarked resemblance up to ±0.1%. This indicates that the fission track analysis technique of uranium content determination is a reliable method inspite of its simplicity. The uranium content in the Kakul deposits is within the permissible limit allowed for the mining and processing of the phosphate rocks for the manufacturing of fertilizers.  相似文献   

16.
Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of enzymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role.

We overview the main techniques of analysis of transporters' structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms.  相似文献   


17.
ABSTRACT

The majority of proteins perform their cellular function after folding into a specific and stable native structure. Additionally, for many proteins less compact ‘molten globule’ states have been observed. Current experimental observations show that the molten globule state can show varying degrees of compactness and solvent accessibility; the underlying molecular cause for this variation is not well understood. While the specificity of protein folding can be studied using protein lattice models, current design procedures for these models tend to generate sequences without molten globule-like behaviour. Here we alter the design process so the distance between the molten globule ensemble and the native structure can be steered; this allows us to design protein sequences with a wide range of folding pathways, and sequences with well-defined heat-induced molten globules. Simulating these sequences we find that (1) molten globule states are compact, but have less specific configurations compared to the folded state, (2) the nature of the molten globule state is highly sequence dependent, (3) both two-state and multi-state folding proteins may show heat-induced molten globule states, as observed in heat capacity curves. The varying nature of the molten globules and typical heat capacity curves associated with the transitions closely resemble experimental observations.  相似文献   

18.
王骏  王炜 《物理学进展》2011,20(3):301-309
文中概要地描述了“蛋白质折叠”的问题及其统计研究方法 ,并针对根据氨基酸之间相互作用特性进行的氨基酸和蛋白质简化研究进行了较为细致的论述和讨论 ;并指出通过这样的分析 ,我们不仅可以对蛋白质具体的简化字母表示有一定的了解 ,而且对于我们进一步了解蛋白质序列 结构关系有很大的帮助。  相似文献   

19.
王骏  王炜 《物理学进展》2000,20(3):301-309
文中概要地描述了“蛋白质折叠”的问题及其统计研究方法 ,并针对根据氨基酸之间相互作用特性进行的氨基酸和蛋白质简化研究进行了较为细致的论述和讨论 ;并指出通过这样的分析 ,我们不仅可以对蛋白质具体的简化字母表示有一定的了解 ,而且对于我们进一步了解蛋白质序列 结构关系有很大的帮助。  相似文献   

20.
Protein films represent an interesting class of materials with various possibilities for applications. We investigated films made of two different synthetic spider silk proteins derived from the garden spider’s (Araneus diadematus) two dragline silk proteins ADF-3 and ADF-4. Protein films cast from hexafluoroisopropanol solutions displayed a predominantly α-helical secondary structure. Processing such films with potassium phosphate or methanol resulted in a transition to a β-sheet rich structure. While as-cast films could be dissolved in water, processed β-sheet rich films were water insoluble. The chemical stability of processed films depended on the amino acid sequence of the respective protein employed. As a proof of principle, fluorescent probes or enzymes were covalently attached to the film surface. The presented approach provides a basis for designing tailor-made protein films using silk proteins as scaffold, in which the film properties can be controlled by genetic engineering of the underlying silks. PACS 68.55.Jk; 81.15.Lm; 87.14.Ee  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号