首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree Δ≥9, then χ(G)=Δ+1. In this paper, we prove that if G is a planar graph with maximum degree 7, and for every vertex v, there is an integer kv∈{3,4,5,6} so that v is not incident with any kv-cycle, then χ(G)=8.  相似文献   

2.
Linear choosability of graphs   总被引:1,自引:0,他引:1  
A proper vertex coloring of a non-oriented graph G is linear if the graph induced by the vertices of any two color classes is a forest of paths. A graph G is linearly L-list colorable if for a given list assignment L={L(v):vV(G)}, there exists a linear coloring c of G such that c(v)∈L(v) for all vV(G). If G is linearly L-list colorable for any list assignment with |L(v)|?k for all vV(G), then G is said to be linearly k-choosable. In this paper, we investigate the linear choosability for some families of graphs: graphs with small maximum degree, with given maximum average degree, outerplanar and planar graphs. Moreover, we prove that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete problem.  相似文献   

3.
Let G=(V,E) be a simple undirected graph with a set V of vertices and a set E of edges. Each vertex vV has an integer valued demand d(v)?0. The source location problem with vertex-connectivity requirements in a given graph G asks to find a set S of vertices with the minimum cardinality such that there are at least d(v) vertex-disjoint paths between S and each vertex vV-S. In this paper, we show that the problem with d(v)?3, vV can be solved in linear time. Moreover, we show that in the case where d(v)?4 for some vertex vV, the problem is NP-hard.  相似文献   

4.
The instance of the problem of finding 2-factors in an orientated graph with forbidden transitions consists of an orientated graph G and for each vertex v of G, a graph Hv of allowed transitions at v. Vertices of the graph Hv are the edges incident to v. An orientated 2-factor F of G is called legal if all the transitions are allowed, i.e. for every vertex v, the two edges of F adjacent to it form an edge in Hv. Deciding whether a legal 2-factor exists in G is NP-complete in general. We investigate the case when the graphs of allowed transitions are taken from some fixed class C. We provide an exact characterization of classes C so that the problem is NP-complete. In particular, we prove a dichotomy for this problem, i.e. that for any class C it is either polynomial or NP-complete.  相似文献   

5.
The vertex arboricity va(G) of graph G is defined as the minimum of subsets in a partition of the vertex set of G so that each subset induces an acyclic subgraph and has been widely studied. We define the concept of circular vertex arboricity vac(G) of graph G, which is a natural generalization of vertex arboricity. We give some basic properties of circular vertex arboricity and study the circular vertex arboricity of planar graphs.  相似文献   

6.
Suppose each vertex of a graph G is assigned a subset of the real line consisting of at most t closed intervals. This assignment is called a t-interval representation of G when vertex v is adjacent to vertex w if and only if some interval for v intersects some interval for w. The interval number i(G) of a graph G is the smallest number t such that G has a t-interval representation. It is proved that i(G) ≤ 3 whenever G is planar and that this bound is the best possible. The related concepts of displayed interval number and depth-r interval number are discussed and their maximum values for certain classes of planar graphs are found.  相似文献   

7.
Let G be an edge-colored graph. An alternating cycle of G is a cycle of G in which any two consecutive edges have distinct colors. Let dc(v), the color degree of a vertex v, be defined as the maximum number of edges incident with v that have distinct colors. In this paper, we study color degree conditions for the existence of alternating cycles of prescribed length.  相似文献   

8.
Given a graph and an edge coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let d c (v), named the color degree of a vertex v, be the maximum number of distinct colored edges incident with v. In this paper, we give several sufficient conditions for the existence of heterochromatic cycles in edge-colored graphs.  相似文献   

9.
《Discrete Mathematics》2002,231(1-3):211-225
The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity among the vertices of G. The contraction of edge e=uv in G consists of removing e and identifying u and v as a single new vertex w, where w is adjacent to any vertex that at least one of u or v were adjacent to. The graph resulting from contracting edge e is denoted G/e. An edge e is diameter-essential if diam(G/e)<diam(G). Let c(G) denote the number of diameter-essential edges in graph G. In this paper, we study existence and extremal problems for c(G); determine bounds on c(G) in terms of diameter and order; and obtain characterizations of graphs achieving extreme values of c(G).  相似文献   

10.
In this work, we study the fundamental group of dual graph of a planar graph. Moreover, we show that a planar graph G has no cut vertex if and only if N(Π(D(G))) = N(Π(D(G − v))) − 1 for any v ∈ V(G). Some applications relevant to quantum space time are indicated. Our results generalize and extend results in paper [1] [S.I. Nada, E.H. Hamouda, Fundamental group of dual graphs and applications to quantum space time, Chaos Soliton Fractals 42 (2009) 500-503].  相似文献   

11.
The Maximum Cardinality Search (MCS) algorithm visits the vertices of a graph in some order, such that at each step, an unvisited vertex that has the largest number of visited neighbours becomes visited. A maximum cardinality search ordering (MCS-ordering) of a graph is an ordering of the vertices that can be generated by the MCS algorithm. The visited degree of a vertex v in an MCS-ordering is the number of neighbours of v that are before v in the ordering. The visited degree of an MCS-ordering ψ of G is the maximum visited degree over all vertices v in ψ. The maximum visited degree over all MCS-orderings of graph G is called its maximum visited degree. Lucena [A new lower bound for tree-width using maximum cardinality search, SIAM J. Discrete Math. 16 (2003) 345-353] showed that the treewidth of a graph G is at least its maximum visited degree.We show that the maximum visited degree is of size O(logn) for planar graphs, and give examples of planar graphs G with maximum visited degree k with O(k!) vertices, for all kN. Given a graph G, it is NP-complete to determine if its maximum visited degree is at least k, for any fixed k?7. Also, this problem does not have a polynomial time approximation algorithm with constant ratio, unless P=NP. Variants of the problem are also shown to be NP-complete.In this paper, we also propose some heuristics for the problem, and report on an experimental analysis of them. Several tiebreakers for the MCS algorithm are proposed and evaluated. We also give heuristics that give upper bounds on the value of the maximum visited degree of a graph, which appear to give results close to optimal on many graphs from real life applications.  相似文献   

12.
Let G be a graph of order n and maximum degree Δ(G) and let γt(G) denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of Gv is less than the total domination number of G. We call these graphs γt-critical. For any γt-critical graph G, it can be shown that nΔ(G)(γt(G)−1)+1. In this paper, we prove that: Let G be a connected γt-critical graph of order n (n≥3), then n=Δ(G)(γt(G)−1)+1 if and only if G is regular and, for each vV(G), there is an AV(G)−{v} such that N(v)∩A=0?, the subgraph induced by A is 1-regular, and every vertex in V(G)−A−{v} has exactly one neighbor in A.  相似文献   

13.
We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k⩾0, such that a planar graph can be obtained from G by k splitting operations. Such operation replaces a vertex v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. We prove that the splitting number decision problem is NP-complete when restricted to cubic graphs. We obtain as a consequence that planar subgraph remains NP-complete when restricted to cubic graphs. Note that NP-completeness for cubic graphs implies NP-completeness for graphs not containing a subdivision of K5 as a subgraph.  相似文献   

14.
Let G be an edge-colored graph. A heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let d c (v), named the color degree of a vertex v, be defined as the maximum number of edges incident with v, that have distinct colors. In this paper, we prove that if G is an edge-colored triangle-free graph of order n ≥?9 and ${d^c(v) \geq \frac{(3-\sqrt{5})n}{2}+1}$ for each vertex v of G, G has a heterochromatic C 4.  相似文献   

15.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

16.
An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex vV(G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment L with |L(v)|≥k for all vV(G), then G is said to be acyclically k-choosable. Borodin et al. proved that every planar graph with girth at least 7 is acyclically 3-choosable (Borodin et al., submitted for publication [4]). More recently, Borodin and Ivanova showed that every planar graph without cycles of length 4 to 11 is acyclically 3-choosable (Borodin and Ivanova, submitted for publication [7]). In this note, we connect these two results by a sequence of intermediate sufficient conditions that involve the minimum distance between 3-cycles: we prove that every planar graph with neither cycles of lengths 4 to 7 (resp. to 8, to 9, to 10) nor triangles at distance less than 7 (resp. 5, 3, 2) is acyclically 3-choosable.  相似文献   

17.
We examine classes of extremal graphs for the inequality γ(G)?|V|-max{d(v)+βv(G)}, where γ(G) is the domination number of graph G, d(v) is the degree of vertex v, and βv(G) is the size of a largest matching in the subgraph of G induced by the non-neighbours of v. This inequality improves on the classical upper bound |V|-maxd(v) due to Claude Berge. We give a characterization of the bipartite graphs and of the chordal graphs that achieve equality in the inequality. The characterization implies that the extremal bipartite graphs can be recognized in polynomial time, while the corresponding problem remains NP-complete for the extremal chordal graphs.  相似文献   

18.
Tao Wang 《Discrete Mathematics》2009,309(5):1079-1083
A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ(G). A graph G is said to be γ-vertex-critical if γ(Gv)<γ(G), for every vertex v in G.Let G be a 2-connected K1,5-free 3-vertex-critical graph of odd order. For any vertex vV(G), we show that Gv has a perfect matching (except two graphs), which solves a conjecture posed by Ananchuen and Plummer [N. Ananchuen, M.D. Plummer, Matchings in 3-vertex critical graphs: The odd case, Discrete Math., 307 (2007) 1651-1658].  相似文献   

19.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

20.
The notion of the list-T-coloring is a common generalization of the T-coloring and the list-coloring. Given a set of non-negative integers T, a graph G and a list-assignment L, the graph G is said to be T-colorable from the list-assignment L if there exists a coloring c such that the color c(v) of each vertex v is contained in its list L(v) and |c(u)-c(v)|∉T for any two adjacent vertices u and v. The T-choice number of a graph G is the minimum integer k such that G is T-colorable for any list-assignment L which assigns each vertex of G a list of at least k colors.We focus on list-T-colorings with infinite sets T. In particular, we show that for any fixed set T of integers, all graphs have finite T-choice number if and only if the T-choice number of K2 is finite. For the case when the T-choice number of K2 is finite, two upper bounds on the T-choice number of a graph G are provided: one being polynomial in the maximum degree of the graph G, and the other being polynomial in the T-choice number of K2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号