首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Given a graph G, a proper labelingf of G is a one-to-one function from V(G) onto {1,2,…,|V(G)|}. For a proper labeling f of G, the profile widthwf(v) of a vertex v is the minimum value of f(v)−f(x), where x belongs to the closed neighborhood of v. The profile of a proper labelingfofG, denoted by Pf(G), is the sum of all the wf(v), where vV(G). The profile ofG is the minimum value of Pf(G), where f runs over all proper labeling of G. In this paper, we show that if the vertices of a graph G can be ordered to satisfy a special neighborhood property, then so can the graph G×Qn. This can be used to determine the profile of Qn and Km×Qn.  相似文献   

2.
Let f be a permutation of V(G). Define δf(x,y)=|dG(x,y)-dG(f(x),f(y))| and δf(G)=∑δf(x,y) over all the unordered pairs {x,y} of distinct vertices of G. Let π(G) denote the smallest positive value of δf(G) among all the permutations f of V(G). The permutation f with δf(G)=π(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles Cn and we prove that π(Cn)=4⌊n/2⌋-4, moreover, we obtain the set of near automorphisms of Cn.  相似文献   

3.
Define a minimal detour subgraph of the n-dimensional cube to be a spanning subgraph G of Qn having the property that for vertices x, y of Qn, distances are related by dG(x, y) ≤ dQn(x, y) + 2. Let f(n) be the minimum number of edges of such a subgraph of Qn. After preliminary work on distances in subgraphs of product graphs, we show that The subgraphs we construct to establish this bound have the property that the longest distances are the same as in Qn, and thus the diameter does not increase. We establish a lower bound for f(n), show that vertices of high degree must be distributed throughout a minimal detour subgraph of Qn, and end with conjectures and questions. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = nD − 1 and f3(G) ≥ nO(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000  相似文献   

5.
Let G be a group of order v, and f(x) be a nonzero integral polynomial. A (v, k, f(x))-polynomial addition set in G is a subset D of G with k distinct elements such that fdDd) = λΣgGg for some integer λ. We discuss some general properties of polynomial addition sets. The relation between polynomial addition sets and polynomial Cayley digraphs is studied and, in particular, some new results on Cayley xn-digraphs and strongly regular Cayley graphs are obtained. Finally, a complete list of polynomial addition sets with certain restrictions on parameters is given.  相似文献   

6.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

7.
 Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)−f(y)|∉T whenever xyE(G). The edge span of a T-coloring−f is the maximum value of |f(x) f(y)| over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C d n of the n-cycle C n for T={0, 1, 2, …, k−1}. In particular, we find the exact value of the T-edge span of C n d for n≡0 or (mod d+1), and lower and upper bounds for other cases. Received: May 13, 1996 Revised: December 8, 1997  相似文献   

8.
Given an embedding f: GZ2 of a graph G in the two-dimensional lattice, let |f| be the maximum L1 distance between points f(x) and f(y) where xy is an edge of G. Let B2(G) be the minimum |f| over all embeddings f. It is shown that the determination of B2(G) for arbitrary G is NP-complete. Essentially the same proof can be used in showing the NP-completeness of minimizing |f| over all embeddings f: GZn of G into the n-dimensional integer lattice for any fixed n ≥ 2.  相似文献   

9.
《Journal of Complexity》1995,11(1):174-193
Let WRn be a semialgebraic set defined by a quantifier-free formula with k atomic polynomials of the kind fZ[X1, . . . , Xn] such that degX1, . . . , Xn(f) < d and the absolute values of coefficients of f are less than 2M for some positive integers d, M. An algorithm is proposed for producing the complexification, Zariski closure, and also for finding all irreducible components of W. The running time of the algorithm is bounded from above by MO(1)(kd)nO(1). The procedure is applied to computing a Whitney system for a semialgebraic set and the real radical of a polynomial ideal.  相似文献   

10.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

11.
An edge-labeling λ for a directed graph G has a weak sense of direction (WSD) if there is a function f that satisfies the condition that for any node u and for any two label sequences α and α generated by non-trivial walks on G starting at u, f(α)=f(α) if and only if the two walks end at the same node. The function f is referred to as a coding function of λ. The weak sense of direction number of G, WSD(G), is the smallest integer k so that G has a WSD-labeling that uses k labels. It is known that WSD(G)≥Δ+(G), where Δ+(G) is the maximum outdegree of G.Let us say that a function τ:V(G)→V(H) is an embedding from G onto H if τ demonstrates that G is isomorphic to a subgraph of H. We show that there are deep connections between WSD-labelings and graph embeddings. First, we prove that when fH is the coding function that naturally accompanies a Cayley graph H and G has a node that can reach every other node in the graph, then G has a WSD-labeling that has fH as a coding function if and only if G can be embedded onto H. Additionally, we show that the problem “Given G, does G have a WSD-labeling that uses a particular coding function f?” is NP-complete even when G and f are fairly simple.Second, when D is a distributive lattice, H(D) is its Hasse diagram and G(D) is its cover graph, then WSD(H(D))=Δ+(H(D))=d, where d is the smallest integer d so that H(D) can be embedded onto the d-dimensional mesh. Along the way, we also prove that the isometric dimension of G(D) is its diameter, and the lattice dimension of G(D) is Δ+(H(D)). Our WSD-labelings are poset-based, making use of Birkhoff’s characterization of distributive lattices and Dilworth’s theorem for posets.  相似文献   

12.
Let G be a connected simple graph, let X?V (G) and let f be a mapping from X to the set of integers. When X is an independent set, Frank and Gyárfás, and independently, Kaneko and Yoshimoto gave a necessary and sufficient condition for the existence of spanning tree T in G such that d T (x) for all xX, where d T (x) is the degree of x and T. In this paper, we extend this result to the case where the subgraph induced by X has no induced path of order four, and prove that there exists a spanning tree T in G such that d T (x) ≥ f(x) for all xX if and only if for any nonempty subset S ? X, |N G (S) ? S| ? f(S) + 2|S| ? ω G (S) ≥, where ω G (S) is the number of components of the subgraph induced by S.  相似文献   

13.
Let G be a simple graph without isolated vertices with vertex set V(G) and edge set E(G). A function f:E(G)?{−1,1} is said to be a signed star dominating function on G if ∑eE(v)f(e)≥1 for every vertex v of G, where E(v)={uvE(G)∣uN(v)}. A set {f1,f2,…,fd} of signed star dominating functions on G with the property that for each eE(G), is called a signed star dominating family (of functions) on G. The maximum number of functions in a signed star dominating family on G is the signed star domatic number of G, denoted by dSS(G).In this paper we study the properties of the signed star domatic number dSS(G). In particular, we determine the signed domatic number of some classes of graphs.  相似文献   

14.
Let Qn,k(n≥3,1≤k≤n-1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges,fv and fe be the numbers of faulty vertices and faulty edges,respectively.In this paper,we give three main results.First,a fault-free path P [u,v] of length at least 2n-2fv-1(respectively,2n-2fv-2) can be embedded on Qn,k with fv+fe≤n-1 when d Qn,k(u,v) is odd(respectively,d Qn,k(u,v) is even).Secondly,an Qn,k is(n-2) edgefault-free hyper Hamiltonian-laceable when n(≥3) and k have the same parity.Lastly,a fault-free cycle of length at least 2n-2fv can be embedded on Qn,k with fe≤n-1 and fv+fe≤2n-4.  相似文献   

15.
Eoin Long 《Combinatorica》2013,33(4):395-428
Let Q n denote the graph of the n-dimensional cube with vertex set {0, 1} n in which two vertices are adjacent if they differ in exactly one coordinate. Suppose G is a subgraph of Q n with average degree at least d. How long a path can we guarantee to find in G? Our aim in this paper is to show that G must contain an exponentially long path. In fact, we show that if G has minimum degree at least d then G must contain a path of length 2 d ? 1. Note that this bound is tight, as shown by a d-dimensional subcube of Q n . We also obtain the slightly stronger result that G must contain a cycle of length at least 2 d .  相似文献   

16.
Let G be a multigraph on n vertices, possibly with loops. An f-factor is a subgraph of G with degree fi at the ith vertex for i = 1, 2,…, n. Tutte's f-factor theorem is proved by providing an algorithm that either finds an f-factor or shows that it does not exist and does this in O(n3) operations. Note that the complexity bound is independent of the number of edges of G and the degrees fi. The algorithm is easily altered to handle the problem of looking for a symmetric integral matrix with given row and column sums by assigning loops degree one. A (g,f)-factor is a subgraph of G with degree di at the ith vertex, where gi ? di ? fi, for i = 1,2,…, n. Lovasz's (g,f)-factor theorem is proved by providing an O(n3) algorithm to either find a (g,f)-factor or show one does not exist.  相似文献   

17.
Let N denote the set of positive integers. The asymptotic density of the set AN is d(A)=limn→∞|A∩[1,n]|/n, if this limit exists. Let AD denote the set of all sets of positive integers that have asymptotic density, and let SN denote the set of all permutations of the positive integers N. The group L? consists of all permutations fSN such that AAD if and only if f(A)∈AD, and the group L* consists of all permutations fL? such that d(f(A))=d(A) for all AAD. Let be a one-to-one function such that d(f(N))=1 and, if AAD, then f(A)∈AD. It is proved that f must also preserve density, that is, d(f(A))=d(A) for all AAD. Thus, the groups L? and L* coincide.  相似文献   

18.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

19.
20.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号