首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We discuss the properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap being commonly used in ultracold atomic physics experiments. The Hamiltonian is derived, and it is demonstrated how tight traps alter the coupling of the atom to the magnetic field. We solve the underlying Schr?dinger equation of the system within a given n manifold and show that for a sufficiently large Ioffe field strength the 2n;{2}-dimensional system of coupled Schr?dinger equations decays into several decoupled multicomponent equations governing the center of mass motion. An analysis of the fully quantized center of mass and electronic states is undertaken. In particular, we discuss the situation of tight center of mass confinement outlining the procedure to generate a low-dimensional ultracold Rydberg gas.  相似文献   

2.
Recent theoretical work on the dynamics of electronic Rydberg wave packets under the influence of laser-induced core transitions is reviewed. The discussion focuses on the intricate interplay between laser-modified electron correlation effects, radiative damping by the ionic core and the time evolution of electronic Rydberg wave packets. Via the stimulated light force this interplay manifests itself also in the atomic center of mass motion. A unified theoretical framework is provided by combining methods of quantum defect theory, stochastic techniques and semiclassical path expansions.  相似文献   

3.
Cold Rydberg atoms exposed to strong magnetic fields possess unique properties which open the pathway for an intriguing many-body dynamics taking place in Rydberg gases, consisting of either matter or anti-matter systems. We review both the foundations and recent developments of the field in the cold and ultracold regime where trapping and cooling of Rydberg atoms have become possible. Exotic states of moving Rydberg atoms, such as giant dipole states, are discussed in detail, including their formation mechanisms in a strongly magnetized cold plasma. Inhomogeneous field configurations influence the electronic structure of Rydberg atoms, and we describe the utility of corresponding effects for achieving tightly trapped ultracold Rydberg atoms. We review recent work on large, extended cold Rydberg gases in magnetic fields and their formation in strongly magnetized ultracold plasmas through collisional recombination. Implications of these results for current antihydrogen production experiments are pointed out, and techniques for the trapping and cooling of such atoms are investigated.  相似文献   

4.
We study the quantum properties of Rydberg atoms in a magnetic Ioffe-Pritchard trap which is superimposed by a homogeneous electric field. Trapped Rydberg atoms can be created in long-lived electronic states exhibiting a permanent electric dipole moment of several hundred Debye. The resulting dipole-dipole interaction in conjunction with the radial confinement is demonstrated to give rise to an effectively one-dimensional ultracold Rydberg gas with a macroscopic interparticle distance. We derive analytical expressions for the electric dipole moment and the required linear density of Rydberg atoms.  相似文献   

5.
<正>This paper reports that ultracold atoms are populated into different nS and nD Rydberg states(n=25~52) by two-photon excitation.The ionization spectrum of an ultracold Rydberg atom is acquired in a cesium magneto-optical trap by using the method of pulse field ionization.This denotes nS and nD states in the ionization spectrum and fits the data of energy levels of different Rydberg states to obtain quantum defects of nS and nD states.  相似文献   

6.
熊锦  牛中奇  张智明 《物理学报》2002,51(10):2245-2244
考虑JaynesCummings模型中与光场相互作用的原子为超冷原子,讨论了原子质心运动的量子效应对光场两正交分量量子噪声压缩的影响,结果表明,在JaynesCummings模型中,原子质心运动的量子效应增加光场两正交分量的量子噪声,使其压缩效应消失 关键词: 超冷原子 质心运动的量子效应 光场量子噪声压缩  相似文献   

7.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing.  相似文献   

8.
In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neighbors. We measure suppression, relative to isolated atom excitation, by up to a factor of 6.4. The dependences of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model. These results are an important step towards using ultracold Rydberg atoms in quantum information processing.  相似文献   

9.
The spontaneous evolution from ultracold Rydberg atoms to plasma is investigated in a caesium MOT by using the method of field ionization. The plasma transferred from atoms in different Rydberg states (n = 22-32) are obtained experimentally. Dependence of the threshold time of evolving to plasma and the threshold number of initial Rydberg atoms on the principal quantum number of initial Rydberg states is studied. The experimental results are in agreement with hot-cold Rydberg-Rydberg atom collision ionization theory.  相似文献   

10.
对于一个三能级原子体系,原子的两个基态能级通过微波耦合起来,其中一个基态能级可被激发到里德堡态,从而可观察量子跳跃现象.本文采用量子轨线方法研究了微波调制的里德堡原子集体量子跳跃.研究结果表明,微波耦合基态能级可以提高光子关联,增强光子聚束效应,即使较少的原子中也可以观察到系统在高里德堡占据数态和低里德堡占据数态之间的切换.这一结果为将来进一步研究里德堡自旋晶格中的多体动力学提供了新思路.  相似文献   

11.
In a combined experimental and theoretical effort we report on two novel types of ultracold long-range Rydberg molecules. First, we demonstrate the creation of triatomic molecules of one Rydberg atom and two ground-state atoms in a single-step photoassociation. Second, we assign a series of excited dimer states that are bound by a so far unexplored mechanism based on internal quantum reflection at a steep potential drop. The properties of the Rydberg molecules identified in this work qualify them as prototypes for a new type of chemistry at ultracold temperatures.  相似文献   

12.
里德堡电子与基态原子的低能电子散射形成长程里德堡分子,这种分子具有大的轨道半径,丰富的振动能级和永久电偶极矩等特点。本文考虑铯里德堡ns态与(n-4)l(n为主量子数,l为角量子数且l2)近简并态的非绝热耦合与p-波共振现象,数值计算了长程铯里德堡分子的势能曲线。分析ns6s(n=32-36)态分子最外层势阱,研究了长程里德堡分子的势阱深度、平衡距离与主量子数n的关系,为实验研究长程里德堡分子提供理论依据。  相似文献   

13.
We present a theoretical analysis of the implementation of an entangling quantum gate between two trapped Ca+ ions which is based on the dipolar interaction among ionic Rydberg states. In trapped ions, the Rydberg excitation dynamics is usually strongly affected by mechanical forces due to the strong couplings between electronic and vibrational degrees of freedom in inhomogeneous electric fields. We demonstrate that this harmful effect can be overcome using dressed states that emerge from the microwave coupling of nearby Rydberg states. At the same time. these dressed states exhibit long-range dipolar interactions which we use to implement a controlled adiabatic phase gate. Our study highlights a route toward a trapped ion quantum processor in which quantum gates are realized independently of the vibrational modes.  相似文献   

14.
王艳梅  唐颖  张嵩  龙金友  张冰 《物理学报》2018,67(22):227802-227802
分子量子态的研究,特别是分子激发态演化过程的研究不仅可以了解分子量子态的基本特性和量子态之间的相互作用,而且可以了解化学反应过程和反应通道间的相互作用.飞秒时间分辨质谱和光电子影像是将飞秒抽运-探测分别与飞行时间质谱和光电子影像相结合的超快谱学方法,为实现分子内部量子态探测,研究分子量子态相互作用及超快动力学过程提供了强有力的工具,可以在飞秒时间尺度下研究单分子反应过程中的光物理或光化学机理.本文详细介绍了飞秒时间分辨质谱和光电子影像的技术原理,并结合本课题组的工作,展示了这两种方法在量子态探测及相互作用研究领域,特别是激发态电子退相、波包演化、能量转移、分子光解动力学以及分子激发态结构动力学研究中的广泛应用.最后,对该技术的发展前景以及进一步的研究工作和方向进行了展望.  相似文献   

15.
This short account summarizes our recent achievements in ultrafast coherent control of isolated molecules in the gas phase, and its ongoing applications to an ensemble of ultracold Rydberg atoms to explore quantum many-body dynamics.  相似文献   

16.
17.
We present extensive Monte Carlo calculations of electron-impact-induced transitions between highly excited Rydberg states and provide accurate rate coefficients. For moderate energy changes, our calculations confirm the widely applied expressions in P. Mansbach and J. Keck [Phys. Rev. 181, 275 (1969)] but reveal strong deviations at small energy transfer. Simulations of ultracold plasmas demonstrate that these corrections significantly impact the short-time dynamics of three-body Rydberg atom formation. The improved rate coefficients yield quantitative agreement with recent ultracold plasma experiments.  相似文献   

18.
We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v″ = 3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.  相似文献   

19.
Using the time-dependent wave-packets method, we have quantum mechanically investigated the three-body recombination process for electron energies varying from 10 to 0.01 eV. The classical "bottleneck" prediction on the probable population was confirmed by our S-wave quantum calculations for electron kinetic energies (K(E)) as low as 0.1 eV. But for K(E)<0.1 eV, the quantum three-body recombination tends to populate lower n levels than the classical theory predicted. We also find that, in the same n level, the recombination tends to populate higher angular-momentum states with K(E) decreasing. These results may shed light on the intrinsic dynamics of both ultracold plasmas and frozen Rydberg gases.  相似文献   

20.
We present a theoretical study of dynamics of Rydberg states of lithium using ultra short chirped laser pulse having a Gaussian envelope. The population transfer probabilities are calculated of different Rydberg states on chirped laser factors. The calculations are performed by direct numerical integration of Schr?dinger equation using fourth order Runge-Kutta method. The behavior of dynamics of Rydberg states for these factors is of great significance. These results are of potential interest in coherent quantum control, quantum computation and in many physical and chemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号