首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a numerical algorithm based on the time evolution of normal modes, we calculate the coefficient of restitution eta for various one-dimensional harmonic solids colliding with a hard wall. We find that, for a homogeneous chain, eta=1 in the thermodynamic limit. However, for a chain in which weaker springs are introduced in the colliding front half, eta remains significantly less than one even in the thermodynamic limit, and the "lost" energy goes mostly into low frequency normal modes. An understanding of these results is given in terms of how the energy is redistributed among the normal modes as the chain collides with the wall. We then contrast these results with those for collisions of one-dimensional harmonic solids with a soft wall. Using perturbation theory, we find that eta=1 for all harmonic chains in the extremely soft wall limit, but that inelasticity grows with increasing chain size in contrast to hard wall collisions.  相似文献   

2.
We enumerate simple periodic orbits for the well-known Fermi-Pasta-Ulam (FPU) problem. Using these solutions as simple modes for the problem, we construct quantum solutions of the corresponding problem. These studies present a natural generalization of the concept of phonon in the nonlinear realm.  相似文献   

3.
We investigate energy localization and transport in the form of discrete breathers and their movability in two-dimensional Fermi–Pasta–Ulam(FPU) lattices. We study the dynamics of the two-dimensional Fermi–Pasta–Ulam(FPU) lattice, incorporating the complicated effects of geometry, long-range interactions as well as nonlinear dispersion. We obtain several exact discrete breather(DB) solutions, such as the odd-parity and even-parity DBs, compact-like DBs and moving DBs for various geometries of the two-dimensional FPU chain. We show that DBs also exist in the same lattice in presence of next-nearest neighbour interaction. Large-amplitude exact subsonic travelling kink-soliton solutions are obtained in such a periodic chain in presence of long-range nonlinear dispersive interaction in the long-wavelength and weakly nonlinear limit. Such a two-dimensional FPU lattice admits finite amplitude nonlinear sinusoidal wave (NSW) solutions with short commensurate as well as incommensurate wavelengths for different geometries of the chain. The usefulness of these solutions for energy localization and transport in various physical systems are discussed.  相似文献   

4.
5.
The symmetry and resonance properties of the Fermi Pasta Ulam chain with periodic boundary conditions are exploited to construct a near-identity transformation bringing this Hamiltonian system into a particularly simple form. This “Birkhoff–Gustavson normal form” retains the symmetries of the original system and we show that in most cases this allows us to view the periodic FPU Hamiltonian as a perturbation of a nondegenerate Liouville integrable Hamiltonian. According to the KAM theorem this proves the existence of many invariant tori on which motion is quasiperiodic. Experiments confirm this qualitative behaviour. We note that one can not expect this in lower-order resonant Hamiltonian systems. So the periodic FPU chain is an exception and its special features are caused by a combination of special resonances and symmetries. Received: 25 July 2000 / Accepted: 20 December 2000  相似文献   

6.
The FPU problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in dimension two, more precisely in a model with triangular cell and nearest-neighbors Lennard-Jones interaction. The number n of degrees of freedom ranges from 182 to 6338. Energy is initially equidistributed among a small number n(0) of low frequency modes, with n(0) proportional to n. We study numerically the time evolution of the so-called spectral entropy and the related "effective number" n(eff) of degrees of freedom involved in the dynamics; in this (rather typical) way we can estimate, for each n and each specific energy (energy per degree of freedom) epsilon, the time scale T(n)(epsilon) for energy equipartition. Numerical results indicate that in the thermodynamic limit the equipartition times are short: more precisely, for large n at fixed epsilon we find a limit curve T(infinity)(epsilon), and T(infinity) grows only as epsilon(-1) for small epsilon. Larger equipartition times are obtained by lowering epsilon, at fixed n, below a crossover value epsilon(c)(n). However, epsilon(c) appears to vanish by increasing n (faster than 1n), and the total energy E=nepsilon, rather than epsilon, appears to be the relevant variable when n is large and epsilon相似文献   

7.
In this paper we prove, among other results, that near the equilibirum position, any periodic FPU chain with an odd number N of particles admits a Birkhoff normal form up to order 4, whereas any periodic FPU chain with N even admits a resonant normal form up to order 4. This resonant normal form of order 4 turns out to be completely integrable. Further, for N odd, we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point. Supported in part by the Swiss National Science Foundation. Supported in part by the Swiss National Science Foundation, the programme SPECT and the European Community through the FP6 Marie Curie RTN ENIGMA (MRTN-CT-2004-5652).  相似文献   

8.
This paper concerns the numerical integration of systems of harmonic oscillators coupled by nonlinear terms, like the common FPU models. We show that the most used integration algorithm, namely leap-frog, behaves very gently with such models, preserving in a beautiful way some peculiar features which are known to be very important in the dynamics, in particular the “selection rules” which regulate the interaction among normal modes. This explains why leap-frog, in spite of being a low order algorithm, behaves so well, as numerical experimentalists always observed. At the same time, we show how the algorithm can be improved by introducing, at a low cost, a “counterterm” which eliminates the dominant numerical error.  相似文献   

9.
On Metastability in FPU   总被引:1,自引:0,他引:1  
We present an analytical study of the Fermi–Pasta–Ulam (FPU) α–model with periodic boundary conditions. We analyze the dynamics corresponding to initial data with one low frequency Fourier mode excited. We show that, correspondingly, a pair of KdV equations constitute the resonant normal form of the system. We also use such a normal form in order to prove the existence of a metastability phenomenon. More precisely, we show that the time average of the modal energy spectrum rapidly attains a well defined distribution corresponding to a packet of low frequencies modes. Subsequently, the distribution remains unchanged up to the time scales of validity of our approximation. The phenomenon is controlled by the specific energy.  相似文献   

10.
This paper is devoted to a numerical study of the familiar α+β FPU model. Precisely, we here discuss, revisit and combine together two main ideas on the subject: (i) In the system, at small specific energy ε=E/N, two well separated time-scales are present: in the former one a kind of metastable state is produced, while in the second much larger one, such an intermediate state evolves and reaches statistical equilibrium. (ii) FPU should be interpreted as a perturbed Toda model, rather than (as is typical) as a linear model perturbed by nonlinear terms. In the view we here present and support, the former time scale is the one in which FPU is essentially integrable, its dynamics being almost indistinguishable from the Toda dynamics: the Toda actions stay constant for FPU too (while the usual linear normal modes do not), the angles fill their almost invariant torus, and nothing else happens. The second time scale is instead the one in which the Toda actions significantly evolve, and statistical equilibrium is possible. We study both FPU-like initial states, in which only a few degrees of freedom are excited, and generic initial states extracted randomly from an (approximated) microcanonical distribution. The study is based on a close comparison between the behavior of FPU and Toda in various situations. The main technical novelty is the study of the correlation functions of the Toda constants of motion in the FPU dynamics; such a study allows us to provide a good definition of the equilibrium time τ, i.e. of the second time scale, for generic initial data. Our investigation shows that τ is stable in the thermodynamic limit, i.e. the limit of large N at fixed ε, and that by reducing ε (ideally, the temperature), τ approximately grows following a power law τε ?a , with a=5/2.  相似文献   

11.
Modulational instability of travelling plane waves is often considered as the first step in the formation of intrinsically localized modes (discrete breathers) in anharmonic lattices. Here, we consider an alternative mechanism for breather formation, originating in oscillatory instabilities of spatially periodic or quasiperiodic nonlinear standing waves (SWs). These SWs are constructed for Klein-Gordon or Discrete Nonlinear Schr?dinger lattices as exact time periodic and time reversible multibreather solutions from the limit of uncoupled oscillators, and merge into harmonic SWs in the small-amplitude limit. Approaching the linear limit, all SWs with nontrivial wave vectors (0 < Q < π) become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. The dynamics resulting from these instabilities is found to be qualitatively different for wave vectors smaller than or larger than π/2, respectively. In one regime persisting breathers are found, while in the other regime the system thermalizes. Received 6 October 2001 / Received in final form 1st March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: mjn@ifm.liu.se  相似文献   

12.
13.
The hydrodynamic equations of superfluids for a weakly interacting Bose gas are generalized to include the effects of periodic optical potentials produced by stationary laser beams. The new equations are characterized by a renormalized interaction coupling constant and by an effective mass accounting for the inertia of the system along the laser direction. For large laser intensities the effective mass is directly related to the tunneling rate between two consecutive wells. The predictions for the frequencies of the collective modes of a condensate confined by a magnetic harmonic trap are discussed for both 1D and 2D optical lattices and compared with recent experimental data.  相似文献   

14.
The study of the dynamics of 1D chains with both harmonic and nonlinear interactions, as in the Fermi–Pasta–Ulam (FPU) and related problems, has played a central role in efforts to identify the broad consequences of nonlinearity in these systems. Here we study the dynamics of highly localized excitations, or discrete breathers, which are known to be initiated by the quasistatic stretching of bonds between adjacent particles. We show via dynamical simulations that acoustic waves introduced by the harmonic term stabilize the discrete breather by suppressing the breather’s tendency to delocalize and disperse. We conclude that the harmonic term, and hence acoustic waves, are essential for the existence of localized breathers in these systems.  相似文献   

15.
A numerical and analytical study of the relaxation to equilibrium of both the Fermi-Pasta-Ulam (FPU) α-model and the integrable Toda model, when the fundamental mode is initially excited, is reported. We show that the dynamics of both systems is almost identical on the short term, when the energies of the initially unexcited modes grow in geometric progression with time, through a secular avalanche process. At the end of this first stage of the dynamics, the time-averaged modal energy spectrum of the Toda system stabilizes to its final profile, well described, at low energy, by the spectrum of a q-breather. The Toda equilibrium state is clearly shown to describe well the long-living quasi-state of the FPU system. On the long term, the modal energy spectrum of the FPU system slowly detaches from the Toda one by a diffusive-like rising of the tail modes, and eventually reaches the equilibrium flat shape. We find a simple law describing the growth of tail modes, which enables us to estimate the time-scale to equipartition of the FPU system, even when, at small energies, it becomes unobservable.  相似文献   

16.
Several methods of prescribing initial data for gravitational and matter fields, which are intended to eliminate extraneous radiation that is not produced by the matter source, are analysed in a simple exactly soluble radiating model. The model consists of an harmonic oscillator coupled to a scalar field along future light cones of Minkowski space time. In particular we analyze the asymptotic regime of the oscillator and find it is characterized essentially by two distinct decay modes. They differ in the way they behave both in the limit of small coupling constant and in a certain Newtonian limit. As a criterion to select initial data for the field with no extra radiation, we require that these initial data sets should put the oscillator from the start into the asymptotic regime. The underlying hypothesis here is that initial transients result from excitation of the oscillator by incoming radiation. We then see that the requirement of a uniform Newtonian limit leads to unique data for the scalar field for each arbitrary data set for the oscillator. We further find that this unique data set indeed satisfies our criterion.  相似文献   

17.
It is shown in a numerical study that the simultaneous influence of discrete and continuous random processes on the full Fermi–Pasta–Ulam (FPU) recurrence dynamics in two parametrically coupled identical chains of vibrators with open ends and under different initial conditions leads to stabilization of the FPU spectrum. A greater influence on chains of gaussian noise as compared to discrete noise is revealed. An increase in the amplitudes of both noises by one order of magnitude results in considerable parameter changes in their FPU spectrum. The full FPU recurrence interaction in coupled chains with discrete and continuous random noise of the medium manifests itself in extremely low-frequency periodic processes in stochastic dynamics of the medium (with frequency two orders of magnitude lower than the lowest frequency in the initial conditions of the chains).  相似文献   

18.
Continuing the previous work on the same subject, we study here different two-dimensional Fermi-Pasta-Ulam (FPU)-like models, namely, planar models with a triangular cell, molecular-type potential and different boundary conditions, and perform on them both traditional FPU-like numerical experiments, i.e., experiments in which energy is initially concentrated on a small subset of normal modes, and other experiments, in which we test the time scale for the decay of a large fluctuation when all modes are excited almost to the same extent. For each experiment, we observe the behavior of the different two-dimensional systems and also make an accurate comparison with the behavior of a one-dimensional model with an identical potential. We assume the thermodynamic point of view and try to understand the behavior of the system for large n (the number of degrees of freedom) at fixed specific energy epsilon=En. As a result, it turns out that: (i) The difference between dimension one and two, if n is large, is substantial. In particular (making reference to FPU-like initial conditions) the "one-dimensional scenario," in which the dynamics is dominated for a long time scale by a weakly chaotic metastable situation, in dimension two is absent; moreover in dimension two, for large n, the time scale for energy sharing among normal modes is drastically shorter than in dimension one. (ii) The boundary conditions in dimension two play a relevant role. Indeed, models with fixed or open boundary conditions give fast equipartition, on a rather short time scale of order epsilon(-1), while a periodic model gives longer equilibrium times (although much shorter than in dimension one).  相似文献   

19.
Torsional modes within a complex molecule containing various functional groups are often strongly coupled so that the harmonic approximation and one-dimensional torsional treatment are inaccurate to evaluate their partition functions. A family of multi-structural approximation methods have been proposed and applied in recent years to deal with the torsional anharmonicity. However, these methods approximate the exact “almost periodic” potential energy as a summation of local periodic functions with symmetric barrier positions and heights. In the present theoretical study, we illustrated that the approximation is inaccurate when torsional modes present non-uniformly distributed local minima. Thereby, we proposed an improved method to reconstruct approximate potential to replace the periodic potential by using information of the local minima and their Voronoi tessellation. First, we established asymmetric barrier heights by introducing two periodicity parameters and assuming that the exact barrier positions are at the boundaries of Voronoi cells. Second, we used multiplicatively weighted Voronoi tessellation to refine the barrier heights and positions by defining a structure-related distance metric. The proposed method has been tested for a few higher-dimensional cases, all of which show promising improved accuracy.  相似文献   

20.
We give a qualitative conceptual explanation of the Fermi–Pasta–Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号