首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了制备氮-磷共掺杂石墨烯量子点(N,P-GQDs)以探索其荧光性质的可调性,我们采用水热法以柠檬酸为碳源,六氯三聚磷腈为氮源、磷源,制备出了蓝色光致发光的氮-磷共掺杂石墨烯量子点(N,P-GQDs)。通过一些测试表征可以发现:制备的N,P-GQDs尺寸分布均匀,其横向平均尺寸约4.8 nm,晶格间距为0.24 nm,纵向平均厚度约0.95 nm。在光学性能测试中,观察到N,P-GQDs的荧光发射光谱对激发波长具有强的依赖性,其对可见光表现为较强的吸收性。通过量子产率公式计算得出N,P-GQDs的量子产率为10.4%。所制备出的N,P-GQDs具有优异的抗漂白能力及光学稳定性。通过调节样品的稀释浓度比例对N,P-GQDs的荧光性质的可调性进行研究,发现随着稀释倍数的增加,荧光强度先增加后下降。此外,发现制备的N,P-GQDs对Fe 3+产生强烈的复合作用,使N,P-GQDs荧光猝灭,由此建立了Fe 3+的传感分析方法。  相似文献   

2.
孙中华  王红艳  王辉  张志东  张中月 《物理学报》2012,61(12):125202-125202
采用离散偶极子近似方法系统地研究了金纳米环双体的消光光谱及其电场分布. 计算结果表明, 金纳米环双体在耦合作用下的共振消光峰对应着不同振动模式, 改变金纳米环双体的排列方式、 间距和尺寸大小, 其表面等离子体共振消光峰发生红移或蓝移. 因此可以通过对金纳米环双体结构参数和排列方式的设定, 调节其表面等离子体共振消光峰的位置. 电场分布表明, 水平排列的金纳米环双体较单个金纳米环产生更强的局部表面增强电场. 适当的小间距, 较大的内外半径的金纳米环水平阵列更适合做表面增强拉曼散射的衬底, 在生物分子检测等领域具有潜在的应用.  相似文献   

3.
Resonant 2p x-ray absorption spectra of size-selected transition metal ions and clusters consisting of 1相似文献   

4.
We use ab initio density-functional theory supplemented with the embedded-atom method to study the self-diffusion of small clusters on the (111) surface of eight fcc metals. A zigzag motion is found to be important in the dimer and tetramer diffusions. The dimer diffuses by a zigzag and concerted motion. The trimer diffuses by a concerted three-atom motion. The tetramer diffuses through a zigzag motion where only two atoms move simultaneously in each step. Thus, instead of increasing, the migration energy is lowered (or stays constant) for the tetramer as compared to that for the trimer. This novel break of the upwards trend in migration energy is predicted to be a general phenomenon.  相似文献   

5.
A series of polyurethane elastomers (PUE) incorporating TDI (toluene diisocyanate) trimer were synthesized via an in-situ polymerization and prepolymer process. It was found that for the sample with 10 wt% or less TDI trimer, the stress–strain curves of PUE exhibited the characteristics of a ductile failure with relatively high tensile strength and elongation at break. However, with incorporation 20~30 wt% of TDI trimer, the samples changed to brittle fracture. All PUE samples exhibited a loss peak corresponding to the glass transition temperature (Tg ) of the soft-segments, which shifted to higher temperature and decreased in peak height by incorporation of the three-functional isocyanurate rings. Although the TDI trimer modified PUE showed only slightly higher onset and peak degradation values than that of PUE in the absence of TDI trimer, there were still big differences in the end temperatures of the second stage. The value of activation energy and frequency factor fluctuated for varying samples, indicating that the thermal stability of PUE can be improved to a certain degree by incorporation of TDI trimer, but not so remarkably.  相似文献   

6.
Silver clusters have been produced by magnetron sputtering in a gas aggregation nanocluster source. Clusters are size selected using a quadrupole mass filter (3–8 nm) or by varying the aggregation tube length (9–20 nm) of the nanocluster source. Mass selected clusters are deposited on a Si(100) substrate at different bias voltages and are characterized by atomic force microscopy. We observe a significant flattening of clusters on the surface due to the increase of impact energy as a result of increasing substrate bias voltage. The behavior of lattice parameters for size selected clusters are investigated by X-ray diffraction. All measured lattice constants exhibit a tensile strain; it is found that the lattice constant slightly increases with increasing cluster size up to a size of 12 nm and then decreases. The melting temperature of deposited clusters is found to be size-dependent and significantly lower than for bulk material, in agreement with theoretical considerations.  相似文献   

7.
Absorption measurements are reported at 570 nm in optically excited mercurynitrogen mixtures at low mercury densities such as are found in atomic mercury lasers. The absorbing species is identified as the Hg2(O g ) dimer, and a model for the formation of steady-state dimer and trimer populations, which gives good agreement with the measurements, is described. The absorption gives rise to a loss mechanism in the mercury laser not previously considered, which depends on the intensity of the uv pumping.  相似文献   

8.
范二女  张万舟 《中国物理 B》2017,26(4):43701-043701
The Bose-Hubbard model with an effective off-site three-body tunneling,characterized by jumps towards one another,between one atom on a site and a pair atoms on the neighborhood site,is studied systematically on a one-dimensional(1D) lattice,by using the density matrix renormalization group method.The off-site trimer superfluid,condensing at momentum k = 0,emerges in the softcore Bose-Hubbard model but it disappears in the hardcore Bose-Hubbard model.Our results numerically verify that the off-site trimer superfluid phase derived in the momentum space from[Phys.Rev.A81,011601(R)(2010)]is stable in the thermodynamic limit.The off-site trimer superfluid phase,the partially off-site trimer superfluid phase and the Mott insulator phase are found,as well as interesting phase transitions,such as the continuous or first-order phase transition from the trimer superfluid phase to the Mott insulator phase.Our results are helpful in realizing this novel off-site trimer superfluid phase by cold atom experiments.  相似文献   

9.
The spectral flow of three-body (trimer) states consisting of two heavy (impurity) particles sitting in a condensate of light bosons is considered. Assuming that the condensate is weakly interacting and that an impurity and a boson have a resonant zero-range two-body interaction, we use the Born-Oppenheimer approximation to determine the effective three-body potential. We solve the resulting Schrödinger equation numerically and determine the trimer binding energies as a function of the coherence length of the light bosonic condensate particles. The binding energy is found to be suppressed by the presence of the condensate when the energy scale corresponding to the coherence length becomes of order the trimer binding energy in the absence of the condensate. We find that the Efimov scaling property is reflected in the critical values of the condensate coherence length at which the trimers are pushed into the continuum.  相似文献   

10.
The ultrasonic properties of single crystalline indium nitride nanowires (InN NWs) are studied for wire size (diameter) 6–100 nm at 300 K following the interaction potential model. Ultrasonic attenuation, ultrasonic velocity, acoustic coupling constant and thermal relaxation time are calculated using higher order elastic constants and thermal conductivity of the nanowires. The analysis of size dependent thermal relaxation time and ultrasonic properties shows that above the 20 nm diameter, InN nanowire tends towards its bulk material property. The third order polynomial is found to be best fit for size variation of thermal relaxation time. The ultrasonic attenuation as a function of size of the nanowires is found to be mainly affected by the thermal conductivity of the nanowires of different sizes.  相似文献   

11.
张树东  张海芳  曾文碧 《中国物理 B》2010,19(12):123602-123602
This paper studies supersonic jet-cooled 1-fluoronaphthalene(1FN) clusters by ultraviolet(UV) laser ionization at 281 nm in a time-of-flight mass spectrometer.The(1FN) + n(n=1-3) series cluster ions are observed where the signal intensity decreases with increasing cluster size.The effects of sample inlet pressures and ionization laser fluxes to mass spectral distribution are measured.Using density functional theory calculations,it obtains a planar geometric structure of 1FN dimer which is combined through two hydrogen bonds.The mass spectra indicate that the intensity of 1FN trimer is much weaker than that of 1FN dimer and this feature is attributed to the fact that the dimer may form the first "shell" in geometric structure while the larger clusters are generated based on this fundamental unit.  相似文献   

12.
丁硕  刘金全  刘玉龙 《中国物理》2004,13(11):1854-1856
We present the Raman spectra of nano-SnO_{2} grains with sizes from 4nm to 80nm excited by 532nm and 1.06μm lines. The enhanced Raman scattering of the nanograins is observed for both exciting lines when the grain size is less than 8nm. The less the grain size is, the more intensely the Raman scattering is enhanced. According to our results, the enhancements of the Raman intensity are a few tenfolds and different for different exciting lines when the grain size is 4nm. It can be attributed to enhanced Raman scattering by electron-hole pair excitations in the nanograins that originate from sub-microscopic (10nm) size and other defect- and surface-related features. A critical size that divides respective predominance of bulk properties and the defect-, surface-, and size-related features can be determined to be about 8nm.  相似文献   

13.
Photoluminescence (PL) properties of Si nanoparticles (Si-np) produced by irradiating the Si wafer with nanosecond laser pulses at 532, 683 and 1064 nm are studied. Si-np are found to be deposited in a doughnut shape around the irradiated spot. The irradiation wavelength is found to be the main cause for the particle size variation. Exposure of the freshly prepared Si-np to air for different periods of time leads to increased PL intensity reaching saturation after few days. The PL spectrum shows two well resolved peaks around 435 nm (2.85 eV) and 441 nm (2.81 eV) within an hour of exposure of the freshly prepared samples to air with broadening of the emission spectrum on further exposure to air. Possible mechanism of particle size variation and PL emission are discussed.  相似文献   

14.
The universal properties of weakly-bound tetramers close to the scaling limit are investigated by solving a subtracted set of Faddeev–Yakubovsky (FY) equations for identical bosons with a zero-range interaction. The solution demands a four-body scale independent of the trimer properties. Furthermore, the effect of a finite effective range is introduced in the FY equations, which we show produces results that are distinct from the scale variation. In particular range effects to two universal scaling functions for the tetramers are investigated. The correlation between successive tetramer energies corresponding to states within two Efimov trimer energies, proposed before and studied close to the unitary limit; and the correlation between the position of the four-atom recombination peaks. In this case, we found a shift in the scaling function due to the range, which can be associated to the shift of the data found for caesium atoms, with respect to zero-range calculations, due to a nonvanishing range in the actual experimental setups.  相似文献   

15.
Excited states and excitation energies of weakly bound systems, e.g., atomic few-body systems and clusters, are difficult to study experimentally. For this purpose we propose a new and very general atom-optical method which is based on inelastic diffraction from transmission gratings. The technique is applicable to the recently found helium trimer molecule 4He3, allowing for the first time an investigation of the possible existence of an excited trimer state and determination of its excitation energy. This would be of fundamental importance for the famous Efimov effect.  相似文献   

16.
The ground state of a Cr trimer supported on the Au(111) surface is investigated by means of a variational approach to the Coqblin-Schrieffer Hamiltonian. The temperature of Kondo-resonance formation (T(K)) for equilateral trimers increases drastically as compared to T(K) for a single Cr adatom. The Kondo state of a Cr trimer proves to be very sensitive to geometry and a small shift of any atom from the symmetrical position leads to a rapid decrease in T(K). These results are in good agreement with recent observations of the Kondo response of a single antiferromagnetic chromium trimer [T. Jamneala, Phys. Rev. Lett. 87, 256804 (2001)]].  相似文献   

17.
Recent studies have raised concerns over applicability of the conventional charging theories to non-spherical particles such as soot aggregates and single-walled carbon nanotube aerosols of complex shape and morphology. It is expected that the role of particle structure and shape on particle diffusion charging characteristics may be significant in the submicron size range for carbon nanotubes (CNTs) and nanofibers (CNFs). In this study, we report experimental data on equilibrium charging characteristics of high-aspect ratio aerosol particles such as CNFs and multi-walled CNTs (MWCNTs) when exposed to a bipolar ion atmosphere. A neutral fraction was measured, i.e., the fraction of particles carrying no electrical charge. A differential mobility analyzer (DMA) was used to classify aerosols, leaving a bipolar radioactive charger to infer the bipolar charging characteristics at different mobility diameters in the submicron size range. The measured neutral fractions for CNF aerosol particles were lower than the corresponding Boltzmann values by 24.4%, 42.0%, and 45.8% for mobility diameters of 400 nm, 600 nm, and 700 nm, respectively, while the neutral fractions for measured aerodynamic diameters of 221 nm, 242 nm, and 254 nm were much lower than those expected by Boltzmann charge distribution, by 43.8%, 63.1%, and 67.3%, respectively. Neutral fractions of spherical particles of polystyrene latex (PSL) and diethylhexyl sebacate (DEHS) particles, measured under identical experimental conditions and procedure, agreed well with the Boltzmann charge distribution. The measured neutral fractions for MWCNT aerosol particles were lower than the corresponding Boltzmann values by 22.3%–25.0% for mobility diameters in the size range from 279 nm to 594 nm. Charging-equivalent diameters of CNF particles correlated well with either mobility diameter or equal-area diameter, which were found to be larger than their mobility or equal-area diameters by up to a factor of 5 in the size range of 400 nm–700 nm, while those of MWCNT particles were larger than the corresponding diameters by a factor of 2 in the size range of 279 nm–594 nm.  相似文献   

18.
The spatial position of the long-wavelength chlorophylls in trimer of pigment-protein complex of photosystem I (PSI) have been determined bymodeling the optical fluorescence absorption and emission spectra for two hypothetical models of PSI trimer. The calculation has been performed using X-ray diffraction data on the spatial position of chlorophylls in PSI monomer; the pigment site energies were taken from the studies of other researchers, while interactions between monomers in trimer are considered as fitting parameters. The interaction energy between the chlorophylls spaced by a distance smaller than 10 Å was estimated based on the concept of extended dipole?dipole interaction. The model under study allowed us to evaluate the influence of the exciton interaction between peripheral pigments on the optical response of PSI trimer. The intensity and shape of stationary fluorescence line turned out to be sensitive to the PSI monomer packing in trimer. A visualization of the density matrix for low-energy exciton states has made it possible to estimate the localization of long-wavelength chlorophylls in PSI trimer.  相似文献   

19.
Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nm×300 nm and 150 nm×450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nm×300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.  相似文献   

20.
Nanoparticle Surface Area Monitor (NSAM, TSI model 3550 and Aerotrak 9000) is an instrument designed to measure airborne surface area concentrations that would deposit in the alveolar or tracheobronchial region of the lung. It was found that the instrument can only be reliably used for the size range of nanoparticles between 20 and 100 nm. The upper size range can be extended to 400 nm, where the minimum in the deposition curves occurs. While the fraction below 20 nm usually contributes only negligibly to the total surface area and is therefore not critical, a preseparator is needed to remove all particles above 400 nm in cases where the size distribution extends into the larger size range. Besides limitations in the particle size range, potential implications of extreme concentrations up to the coagulation limit, particle material (density and composition) and particle morphology are discussed. While concentration does not seem to pose any major constraints, the effect of different agglomerate shapes still has to be further investigated. Particle material has a noticeable impact neither on particle charging in NSAM nor on the deposition curves within the aforementioned size range, but particle hygroscopicity can cause the lung deposition curves to change significantly which currently cannot be mimicked with the instrument. Besides limitations, possible extensions are also discussed. It was found that the tendencies of the particle deposition curves of a reference worker for alveolar, tracheobronchial, total and nasal depositions share the same tendencies in the 20–400 nm size range and that their ratios are almost constant. This also seems to be the case for different individuals and under different breathing conditions. By means of appropriate calibration factors NSAM can be used to deliver the lung deposited surface area concentrations in all these regions, based on a single measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号