首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2021,30(6):67304-067304
We investigate the Hall effects of quadratic band crossing(QBC) fermions in a square optical lattice with spin–orbit coupling and orbital Zeeman term. We find that the orbital Zeeman term and shaking play critical roles in the systems,which can drive a topological transition from spin Hall phases to anomalous Hall phase with nonvanishing(spin) Chern numbers. Due to the interplay among the orbital Zeeman term, spin–orbit coupling, and the shaking, the phase diagram of the system exhibits rich phases, which are characterized by Chern number.  相似文献   

2.
常凯  杨文 《物理学进展》2011,28(3):236-262
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

3.
《Current Applied Physics》2019,19(12):1362-1366
Based on a spin drift-diffusion model, we theoretically investigate the spin-orbit torque in ferromagnet/normal metal/insulator trilayers with considering the Rashba interfacial spin-orbit coupling at the normal metal/insulator interface. We find that the spin-orbit torque shows the opposite normal-metal-thickness dependences for the bulk spin-orbit coupling effect in the normal metal layer and for the interfacial spin-orbit coupling effect at the normal metal/insulator interface, offering a way to disentangle these two spin-orbit coupling effects. Moreover, we show that the conventional interpretation based on the bulk spin-orbit coupling effect overestimates the spin Hall angle and underestimates the spin diffusion length of the normal metal layer, when the interfacial contribution is non-negligible. Our result, a concise analytic expression of the spin-orbit torque considering both bulk and interface spin-orbit coupling effects, will be useful to design and interpret experiments on spin-orbit torque experiments in ferromagnet/normal metal/insulator trilayers.  相似文献   

4.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

5.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

6.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

7.
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣。基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径。然而,在具有自旋轨道耦合的系统中,自旋流并不守恒。如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一。本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展。引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性。利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的自旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力。由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累。自旋霍尔效应已经在半导体和金属材料中被观察到。虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注。通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释。此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象。在能量简并点附近,自旋霍尔电导率和隧穿自旋电导率均会出现共振现象。当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应。  相似文献   

8.
自旋轨道耦合系统中的自旋流与自旋霍尔效应   总被引:2,自引:0,他引:2  
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣.基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径.然而,在具有自旋轨道耦合的系统中,自旋流并不守恒.如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一.本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展.引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性.利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的白旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力.由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累.自旋霍尔效应已经在半导体和金属材料中被观察到.虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注.通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释.此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象.在能量简并点附近,自旋霍尔电导率和隧穿白旋电导率均会出现共振现象.当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应.  相似文献   

9.
We investigate the spin Hall effect in ballistic chaotic quantum dots with spin-orbit coupling. We show that a longitudinal charge current can generate a pure transverse spin current. While this transverse spin current is generically nonzero for a fixed sample, we show that when the spin-orbit coupling time is short compared to the mean dwell time inside the dot, it fluctuates universally from sample to sample or upon variation of the chemical potential with a vanishing average.  相似文献   

10.
We study intrinsic spin Hall effect in p-type GaAs quantum well structure described by Luttinger Hamiltonian and a Rashba spin-orbit coupling arising from the structural inversion symmetry breaking. The Rashba term induces an energy level crossing in the lowest heavy hole subband, which gives rise to a resonant spin Hall conductance. The resonance may be used to identify the intrinsic spin Hall effect in experiments.  相似文献   

11.
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.  相似文献   

12.
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.  相似文献   

13.
14.
We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.  相似文献   

15.
The spin Hall effect—the excitation of a spin flux by an electric current normal to it—is considered in a paramagnetic sample in disregard of the spin-orbit coupling in the classical Hall effect case, when the Pauli spin polarization is induced by the magnetic field H 0 normal to the electric current.  相似文献   

16.
何冬梅  彭斌  张万里  张文旭 《物理学报》2019,68(10):106101-106101
采用磁控溅射法在未掺杂和掺杂的SrTiO_3基片上沉积了NiFe薄膜,通过翻转测试法分离出掺杂样品中的自旋整流电压和逆自旋霍尔电压.研究结果表明:在未掺杂的SrTiO_3基片中,翻转前后测试的电压曲线基本一致,为NiFe薄膜自旋整流效应产生的电压.对于掺Nb浓度x为0.028, 0.05, 0.1, 0.15, 0.2的SrTiO_3基片,分离出的逆自旋霍尔电压随掺杂浓度增加而减小,在掺杂浓度为0.15和0.2的样品中没有探测到明显的逆自旋霍尔电压.本文的结果表明,在SrTiO_3中掺入强自旋轨道耦合的杂质,通过掺杂浓度可以实现对SrTiO_3中逆自旋霍尔效应的调控,这类可调控的自旋相关研究为自旋电子器件的研究和开发提供了更多的可能性,具有很大的潜在应用价值.  相似文献   

17.
As a relativistic quantum mechanical effect, it is shown that the electron field exerts a transverse force on an electron spin 1/2 only if the electron is moving. The spin force, analogue to the Lorentz for an electron charge in a magnetic field, is perpendicular to the electric field and the spin current whose spin polarization is projected along the electric field. This spin-dependent force can be used to understand the Zitterbewegung of the electron wave packet with spin-orbit coupling and is relevant to the generation of the charge Hall effect driven by the spin current in semiconductors.  相似文献   

18.
The spin Hall transport properties in a two-dimensional electron system with both Rashba spin-orbit coupling (SOC) and magnetic impurities are investigated. Electrons are scattered by impurities through an exchange interaction that leads to spin flip-flop processes and so changes the spin Hall effect induced by the SOC. The spin Hall conductance is calculated in a 4-terminal system using the Landauer-Buttiker formula and Green function approach. In comparison with the simulation results on nonmagnetic impurities doping systems, our results reveal that the spin Hall conductance is still nonzero in a system with a large density of magnetic impurities and a finite intensity of the exchange interaction between the electrons and impurities, and its sign may be altered when the doping density and interaction strength are large enough.  相似文献   

19.
The quasiclassical Green function formalism is used to describe charge and spin dynamics in the presence of spin-orbit coupling. We review the results obtained for the spin Hall effect on restricted geometries. The role of boundaries is discussed in the framework of spin diffusion equations.  相似文献   

20.
Pumping of charge current by spin dynamics in the presence of the Rashba spin-orbit interaction is theoretically studied. Considering a disordered electron, the exchange coupling and spin-orbit interactions are treated perturbatively. It is found that the dominant current induced by spin dynamics is interpreted as a consequence of the conversion from spin current via the inverse spin Hall effect. We also find that the current has an additional component from a fictitious conservative field. The results are applied to the case of a moving domain wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号