首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sorts of bosons in an optical lattice at commensurate filling factors can form five stable super-fluid and insulating ground states with rich and nontrivial phase diagram. The structure of the ground state diagram is established by mapping a d-dimensional quantum system onto a (d+1)-dimensional classical loop-current model and Monte Carlo (MC) simulations of the latter. Surprisingly, the quantum phase diagram features, besides second-order lines, first-order transitions and two multicritical points. We explain why first-order transitions are generic for models with pairing interactions using microscopic and mean-field (MF) arguments. In some cases, the MC results strongly deviate from the MF predictions.  相似文献   

2.
We present phase diagrams for a polarized Fermi gas in an optical lattice as a function of temperature, polarization, and lattice filling factor. We consider the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), Sarma or breached pair, and BCS phases, and the normal state and phase separation. We show that the FFLO phase appears in a considerable portion of the phase diagram. The diagrams have two critical points of different nature. We show how various phases leave clear signatures to momentum distributions of the atoms which can be observed after time of flight expansion.  相似文献   

3.
A strongly interacting Bose gas in an optical lattice is studied using a hard‐core interaction. Two different approaches are introduced, one is based on a spin‐1/2 Fermi gas with attractive interaction, the other one on a functional integral with an additional constraint (slave‐boson approach). The relation between fermions and hard‐core bosons is briefly discussed for the case of a one‐dimensional Bose gas. For a three‐dimensional gas we identify the order parameter of the Bose‐Einstein condensate through a Hubbard‐Stratonovich transformation and treat the corresponding theories within a mean‐field approximation and with Gaussian fluctuations. This allows us to evaluate the phase diagram, including the Bose‐Einstein condensate and the Mott insulator, the density‐density correlation function, the static structure factor, and the quasiparticle excitation spectrum. The role of quantum and thermal fluctuations are studied in detail for both approaches, where we find good agreement with the Gross‐Pitaevskii equation and with the Bogoliubov approach in the dilute regime. In the dense regime, which is characterized by the phase transition between the Bose‐Einstein condensate and the Mott insulator, we discuss a renormalized Gross‐Pitaevskii equation. This equation can describe the macroscopic wave function of the Bose‐Einstein condensate in the dilute regime as well as close to the transition to the Mott insulator. Finally, we compare the results of the attractive spin‐1/2 Fermi gas and those of the slave‐boson approach and find good agreement for all physical quantities.  相似文献   

4.
We study bosons in the first excited Bloch band of a double-well optical lattice, recently realized at NIST. By calculating the relevant parameters from a realistic nonseparable lattice potential, we find that in the most favorable cases, the boson lifetime in the first excited band can be several orders of magnitude longer than the typical nearest-neighbor tunneling time scales, in contrast with that of a simple single-well lattice. In addition, for sufficiently small lattice depths, the excited band has minima at nonzero momenta incommensurate with the lattice period, which opens a possibility to realize an exotic superfluid state that spontaneously breaks the time-reversal, rotational, and translational symmetries. We discuss possible experimental signatures of this novel state.  相似文献   

5.
We study properties of the supersolid phase observed for hard-core bosons on the triangular lattice near half-integer filling factor, and the phase diagram of the system at finite temperature. We find that the solid order is always of the (2m, -m, -m) with m changing discontinuously from positive to negative values at half filling, in contrast with phases observed for Ising spins in a transverse magnetic field. At finite temperature we find two intersecting second-order transition lines: one in the 3-state Potts universality class and the other of the Kosterlitz-Thouless type.  相似文献   

6.
We calculate the location of the quantum phase transitions of a Bose gas trapped in an optical lattice as a function of effective scattering length a(eff) and temperature T. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a nose in the phase diagram above the free Bose-Einstein critical temperature T((0))(c), thus predicting the existence of a reentrant transition above T((0))(c), where a condensate should form when increasing a(eff). At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.  相似文献   

7.
We show that a two-dimensional (2D) array of 1D interacting boson tubes has a deconfinement transition between a 1D Mott insulator and a 3D superfluid for commensurate fillings and a dimensional crossover for the incommensurate case. We determine the phase diagram and excitations of this system and discuss the consequences for Bose condensates loaded in 2D optical lattices.  相似文献   

8.
We study bosons loaded in a one-dimensional optical lattice of twofold p-orbital degeneracy at each site. Our numerical simulations find an anti-ferro-orbital p(x)+ip(y), a homogeneous p(x) Mott-insulator phase, and two kinds of superfluid phases distinguished by the orbital order (anti-ferro-orbital and paraorbital). The anti-ferro-orbital order breaks time-reversal symmetry. Experimentally observable evidence is predicted for the phase transition between the two different superfluid phases. We also discover that the quantum noise measurement is able to provide a concrete evidence of time-reversal symmetry breaking in the first Mott phase.  相似文献   

9.
We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent to an anisotropic spin-1/2 XXZ model in a magnetic field. We present the rich phase diagram with a first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing the temperature is found, similar to the Pomeranchuk effect in 3He.  相似文献   

10.
We show that the dynamics of cold bosonic atoms in a two-dimensional square optical lattice produced by a bichromatic light-shift potential is described by a Bose-Hubbard model with an additional effective staggered magnetic field. In addition to the known uniform superfluid and Mott insulating phases, the zero-temperature phase diagram exhibits a novel kind of finite-momentum superfluid phase, characterized by a quantized staggered rotational flux. An extension for fermionic atoms leads to an anisotropic Dirac spectrum, which is relevant to graphene and high-T(c) superconductors.  相似文献   

11.
We study the nature of the ground state of the two-dimensional extended boson Hubbard model on a square lattice by quantum Monte Carlo methods. We demonstrate that strong but finite on-site interaction U along with a comparable nearest-neighbor repulsion V result in a thermodynamically stable supersolid ground state for densities larger than 1/2, in contrast to fillings less than 1/2 or for very large U, where the checkerboard supersolid is unstable towards phase separation. We discuss the relevance of our results to realizations of supersolids using cold bosonic atoms in optical lattices.  相似文献   

12.
We study the effect of an optical lattice (OL) on the ground-state properties of one-dimensional ultracold bosons with three-body attractive interactions and two-body repulsive interactions, which are described by a cubic-quintic Gross-Pitaevskii equation with a periodic potential. Without the optical lattice and with a vanishing two-body interaction term, normalizable soliton solutions of the Townes type are possible only at a critical value of the interaction strength, at which an infinite degeneracy of the ground state occurs; a repulsive two-body interaction makes such localized solutions unstable. We show that the OL opens a stability window around the critical point when the strength of the periodic potential is above a critical threshold. We also consider the effect of an external parabolic trap, studying how the stability properties depend on the matching between minima of the periodic potential and the minimum of the parabolic trap.  相似文献   

13.
We introduce a 3D compact U(1) lattice gauge theory having nonlocal interactions in the temporal direction, and study its phase structure. The model is relevant for the compact QED3 and strongly correlated electron systems like the t-J model of cuprates. For a power-law decaying long-range interaction, which simulates the effect of gapless matter fields, a second-order phase transition takes place separating the confinement and deconfinement phases. For an exponentially decaying interaction simulating matter fields with gaps, the system exhibits no signals of a second-order transition.  相似文献   

14.
We investigate the physics of dipolar bosons in a two-dimensional optical lattice. It is known that due to the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar bosons in an optical lattice presents novel quantum phases, like checkerboard and supersolid phases. In this Letter, we consider the properties of the system beyond its ground state, finding that it is characterized by a multitude of almost degenerate metastable states, often competing with the ground state. This makes dipolar bosons in a lattice similar to a disordered system and opens possibilities of using them as quantum memories.  相似文献   

15.
We study the superfluid-Mott-insulator transition of antiferromagnetic spin-1 bosons in an optical lattice described by a Bose-Hubbard model. Our variational study with the Gutzwiller variational wave function determines that the superfluid-Mott-insulator transition is a first-order one at a part of the phase boundary curve, contrary to the spinless case.  相似文献   

16.
We describe a new method for creating spin-dependent long-range interactions between atomic ultra-cold neutral bosons—specifically 87Rb—in an optical lattice. In this proposal, the bosonic system is immersed in a spin-polarized degenerate Fermi gas (almost perfectly non-interacting), here 6Li. We first show that the bosons acquire a long-range interaction analogous to Ruderman–Kittel–Kasuya–Yosida interaction in solids. The resulting fermion-mediated Bose–Bose interaction, which can depend on the bosons’ spin state, is tunable using inter-species Feshbach resonance. When the bosons are subject to a suitable optical lattice, 3-body loss processes are greatly suppressed. We conclude by showing that these interactions can lead to a supersolid phase for single-spin Bose system, and also to a fully tunable transverse field Ising model for a two-component Bose system.  相似文献   

17.
Interacting lattice bosons at integer filling can support two distinct insulating phases, which are separated by a critical point: the Mott insulator and the Haldane insulator [E.?G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett. 97, 260401 (2006).]. The critical point can be gapped out by breaking lattice inversion symmetry. Here, we show that encircling this critical point adiabatically pumps one boson across the system. When multiple chains are coupled, the two insulating phases are no longer sharply distinct, but the pumping property survives. This leads to strict constraints on the topology of the phase diagram of systems of quasi-one-dimensional interacting bosons.  相似文献   

18.
The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable phases was observed.  相似文献   

19.
20.
A phase transition for bosonic atoms in a two-dimensional anisotropic optical lattice is considered. If the tunnelling rates in two directions are different, the system can undergo a transition between a two-dimensional superfluid and a one-dimensional Mott insulating array of strongly coupled tubes. The connection to other lattice models is exploited in order to better understand the phase transition. Critical properties are obtained using quantum Monte Carlo calculations. These critical properties are related to correlation properties of the bosons and a criterion for commensurate filling is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号