首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic properties of Ce(Ru0.85Rh0.15)2Si2 were studied by neutron scattering and measurements of magnetization, susceptibility, specific heat and thermal expansion as a function of temperature. We observe a crossover from a high temperature localized spin to a low temperature heavy electron state. Spin density wave (SDW) behavior appears in the heavy electron state below TN = 5.5 K and the volume change due to spin quantum fluctuations associated with the SDW and the Kondo screening is reminiscent of moment-volume instabilities of the INVAR and anti-INVAR behavior of 3 d transition metal alloys.  相似文献   

2.
We study the temperature and field dependence of the magnetic and transport properties of the non-Fermi-liquid (NFL) compound Ce(Ru0.5Rh0.5)2Si2. For fields H less, similar0.1 T the results suggest that the observed NFL behavior is disorder driven. For higher fields, however, magnetic and transport properties are dominated by the coupling of the conduction electrons to critical spin fluctuations. The temperature dependence of the susceptibility as well as the scaling properties of the magnetoresistance are in very good agreement with the predictions of recent dynamical mean-field theories of Kondo alloys close to a spin-glass quantum critical point.  相似文献   

3.
We report measurements and analysis of the specific heat and magnetocaloric effect-induced temperature changes at the phase boundary into the single magnetic field-induced phase (phase II) of U(Ru0.96Rh0.04)2Si2, which yield irreversible properties similar to those at the valence transition of Yb(1-x)Y(x)InCu4. To explain these similarities, we propose a bootstrap mechanism by which lattice parameter changes caused by an electric quadrupolar order parameter within phase II become coupled to the 5f-electron hybridization, giving rise to a valence change at the transition.  相似文献   

4.
5.
Muon spin relaxation experiments have been carried out in the paramagnetic and magnetically ordered states of URh2Si2, U(Rh0.35Ru0.65)2Si2, NdRh2Si2 and CeRh2Si2. In order to obtain information on the localisation and diffusion properties of the muon, some measurements have been performed also on isostructural diamagnetic compounds. From our measurements. information on the magneto-crystalline anisotropy of the samples has been obtained. Depending on the compound, we found a static field distribution below the Néel temperature. We discuss the implications of this result on the magnetic properties of the various materials.  相似文献   

6.
The complete elastic tensor of U(2)Rh(3)Si(5) has been determined over the temperature range of 5-300 K, including the dramatic first-order transition to an antiferromagnetic state at 25.5 K. Sharp upward steps in the elastic moduli as the temperature is decreased through the transition reveal the first-order nature of the phase change. In the antiferromagnetic state the temperature dependence of the elastic moduli scales with the square of the ordered moment on the uranium ion, demonstrating strong spin-lattice coupling. The temperature dependence of the moduli well above the transition indicates coupling of the ultrasonic waves to the crystal electric field levels of the uranium ion where the lowest state is a singlet. The elastic constant data suggest that the first-order phase change is magnetically driven by a bootstrap mechanism involving the ground state singlet and a magnetically active crystal electric field level.  相似文献   

7.
Simplification of the magnetic field-versus-temperature phase diagram and quantum criticality in URu2Si2 dilutely doped with Rh are studied by measuring the magnetization and resistivity in magnetic fields of up to 45 T. For x=4%, the hidden order is completely destroyed, leaving a single field-induced phase II. A correlation between the field dependence of this phase and that of the quantum critical point, combined with the suppression of the T2 coefficient of the resistivity within it, implicates field-tuned quantum criticality as an important factor in phase formation.  相似文献   

8.
9.
10.
We report low-temperature calorimetric, magnetic, and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh(2)Si(2) ( T(N)=70 mK) as a function of magnetic field B. While for fields exceeding the critical value B(c0) at which T(N)-->0 the low-temperature resistivity shows an AT2 dependence, a 1/(B-B(c0)) divergence of A(B) upon reducing B to B(c0) suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.  相似文献   

11.
X-Ray, magnetization and Mossbauer (151Eu, 155Gd, 161Dy and dilute 57Fe) studies of RM2Si2 reveal that when R is a magnetic ion the compounds order antiferromagnetically. For M = Rh a second antiferromagnetic phase transition is observed, corresponding to Rh itinerant electron magnetic ordering. In EuRh2Si2 the Eu ion is predominantly divalent with a mixed valent component. In EuRu2Si2 the Eu is predominantly trivalent. LaRu2Si2 and LuRu2Si2 display enhanced electron paramagnetism and become superconducting at 3.5 K and 2.4 K respectively. LaRh2Si2, YRh2Si2 and LuRh2Si2 display an itinerant electron magnetic phase transition, TM (LaRh2Si2) = 7 K, and at lower temperatures a superconducting phase transition, Tc(LaRh2Si2) = 3.8 K. There is evidence that in the superconducting phase the itinerant magnetic order survives.  相似文献   

12.
We have explored the vicinity of the antiferromagnetic quantum critical point in the related heavy fermion metals CePd2Si2 and CeNi2Ge2 as a function of hydrostatic pressure. The normal state resistivity of the antiferromagnet CePd2Si2 near the critical pressure, at which magnetic order disappears, varies as ρ ~ Tχ(1:1 < χ < 1:4) over nearly two orders of magnitude in temperature up to about 30 K. This anomalous form for the resistivity appears to defy not only Fermi-liquid theory, but also simple phenomenological models for the effect of spin fluctuations close to a quantum critical point. An analogous unconventional behaviour is observed in the ambient pressure resistivity of the electronically and structurally equivalent, non-magnetic metal CeNi2Ge2. At pressures above 15 kbar, a new and unexpected superconducting transition appears in CeNi2Ge2 below 220 mK, which rises to higher temperatures with increasing pressure, reaching 400 mK at 26 kbar.  相似文献   

13.
14.
15.
16.
Masses, charges and kinetic energies of light fission fragments from the reactions232U(n, f) and239Pu(n, f) induced by thermal neutrons have been measured on the Cosi fan tutte spectrometer of the Institut Laue-Langevin in Grenoble. Both at very high and very low kinetic energies marked fine structures in the mass yields and odd-even staggerings in the charge yields are observed. In the framework of a scission point model the results are shown to point to compact and deformed scission configurations, respectively, where at scission the fragments carry no intrinsic excitation energy. The two limiting processes may, therefore, be called cold compact fission (usually known as cold fission) and cold deformed fission. The latter process as a general phenomenon of low energy fission has come into focus only recently.  相似文献   

17.
T Kohara 《Pramana》2002,58(5-6):755-760
NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si NMR signals which come from the paramagnetic (PM) region in the sample. This gives definite evidence for spatially-inhomogeneous development of AF ordering below T 0 of 17.5 K. The volume fraction is enhanced by applied pressure, whereas the value of internal field (∼91 mT) remains constant up to 8.3 kbar. In the AF region, the ordered moment is about one order of magnitude larger than 0.03 μB. (2) CeTIn5: The pressure and temperature (T) dependences of nuclear spin-lattice relaxation rate 1/T 1 of 115In in CeTIn5 have shown that the superconductivity (SC) occurs close to an AF instability. From the T dependences of 1/T 1 and Knight shift below T c. CeTIn5 has been found to exhibit non-s wave (probable d wave) SC with even parity and line nodes in the SC energy gap.  相似文献   

18.
We investigate the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in metallic d-electron systems, by focusing on the t2g-orbital tight-binding model for Sr2MO4 (M=Ru, Rh, Mo). The conductivities obtained are one or 2 orders of magnitude larger than predicted values for p-type semiconductors with approximately 5% hole doping. The origin of these giant Hall effects is the "effective Aharonov-Bohm phase" that is induced by the d-atomic angular momentum in connection with the spin-orbit interaction and the interorbital hopping integrals. The huge SHC and OHC generated by this mechanism are expected to be ubiquitous in multiorbital transition metal compounds, which opens the possibility of realizing spintronics as well as "orbitronics" devices.  相似文献   

19.
The bulk magnetic susceptibility chi(T,B) of YbRh(2)(Si(0.95)Ge(0.05))(2) has been investigated close to the field-induced quantum critical point at B(c) = 0.027 T. For B < or= 0.05 T a Curie-Weiss law with a negative Weiss temperature is observed at temperatures below 0.3 K. Outside this region, the susceptibility indicates ferromagnetic quantum critical fluctuations, chi(T) proportional, variantT-0.6 above 0.3 K. At low temperatures the Pauli susceptibility follows chi(0) proportional, variant(B-B(c))(-0.6) and scales with the coefficient of the T(2) term in the electrical resistivity. The Sommerfeld-Wilson ratio is highly enhanced and increases up to 30 close to the critical field.  相似文献   

20.
The crystal structures and the physical properties of U4M7Ge6 (M = Ru, Os) and UM2Ge2 (M = Rh, Ir) have been investigated. The former crystallize in the cubic structure of U4Re7Si6; U4Ru7Ge6 orders ferromagnetically at TC ≈ 10–13 K whereas U4Os7Ge6 remains paramagnetic down to 4.2 K. The latter whise structures derive from the tetragonal ThCr2Si2 or CaBe2Ge2 types display limited homogeneity ranges; URh2Ge2 exhibits a dense-Kondo behaviour at low temperatures; UIr2Ge2 shows polymorphism and its physical properties are strongly influenced by its crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号