首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A new concept is proposed for the paramagnetic metal insulator transition in the layer perovskite Ca2-xSrxRuO4. Whereas the pure Sr compound is metallic up to large Coulomb energies due to strong orbital fluctuations, structural changes induced by doping with Ca give rise to an interorbital charge transfer which makes the material extremely sensitive to local correlations. Using dynamical mean field theory based on finite temperature multiband exact diagonalization, it is shown that the combination of crystal field splitting and on-site Coulomb interactions leads to complete filling of the d(xy) band and to a Mott transition in the half-filled d(xz,yz) bands.  相似文献   

2.
俞榕 《物理学报》2015,64(21):217102-217102
大部分铁基超导体的正常态呈现坏金属行为, 这表明体系中存在较强的电子关联效应. 最近的实验与理论研究显示, 铁基超导体中的电子关联具有多轨道的特征. 本文介绍与评论铁基超导体多轨道哈伯德模型中电子关联方面理论研究的最新进展; 着重讨论以隶自旋技术为代表的一系列量子多体计算方法在研究多轨道系统中金属绝缘体相变的应用. 理论计算给出了铁基超导体多轨道哈伯德模型基于电子关联的基态相图. 在对应母体化合物的电子填充数时, 基态存在从金属到绝缘体的莫特转变. 临近莫特转变, 体系呈现坏金属行为; 其电子性质存在较强的轨道选择性. 轨道选择性的强弱与体系中的洪德耦合和轨道的晶体场劈裂密切相关. 对钾铁硒系统, 研究发现其基态相图存在轨道选择莫特相: 其中铁的3d xy轨道已被莫特局域化, 但其他3d轨道电子仍具有巡游性. 这一新相的发现, 对理解以钾铁硒为代表的一大类铁基超导体正常态与超导之间的联系提供了重要线索.  相似文献   

3.
We have studied the three-dimensional shapes of the Fermi surfaces (FSs) of BaFe(2)(As(1-x)P(x))(2) (x=0.38), where superconductivity is induced by isovalent P substitution and by angle-resolved photoemission spectroscopy. Moderately strong electron mass enhancement has been identified for both the electron and hole FSs. Among two observed hole FSs, the nearly two-dimensional one shows good nesting with the outer two-dimensional electron FS, but its orbital character is different from the outer electron FS. The three-dimensional hole FS shows poor nesting with the electron FSs. The present results suggest that the three dimensionality and the difference in the orbital character weaken FS nesting while partial nesting among the outer electron FSs of d(xy) character and/or that within the three-dimensional hole FS becomes dominant, which may lead to the nodal superconductivity.  相似文献   

4.
F Bondino  A Barla  T Schmitt  VN Strocov  JY Henry  JP Sanchez 《J Phys Condens Matter》2012,24(32):325402, 1-325402, 5
We measured the low energy excitation spectrum of α'-NaV (2)O(5) across its charge ordering and crystallographic phase transition with resonant inelastic x-ray scattering (RIXS) at the V L(3) edge. Exploiting the polarization dependence of the RIXS signal and the high resolution of the data, we reveal the excitation across the insulating gap at 1?eV and identify the excitations from occupied 3d(xy) bonding orbitals to unoccupied bonding 3d(xy) and 3d(yz)/3d(xz) orbitals. Furthermore we observe a progressive change of the electronic structure of α'-NaV (2)O(5) induced by soft x-ray irradiation, with the appearance of features characteristic of sodium deficient Na(x)V (2)O(5) (x?相似文献   

5.
We report angle-resolved photoelectron spectroscopy results of the Fermi surface of Ca1.5Sr0.5RuO4, which is at the boundary of magnetic/orbital instability in the phase diagram of the Ca-substituted Sr ruthenates. Three t(2g) energy bands and the corresponding Fermi surface sheets are observed, which are also present in the Ca-free Sr2RuO4. We find that while the Fermi surface topology of the alpha,beta (d(yz,zx)) sheets remains almost the same in these two materials, the gamma (d(xy)) sheet exhibits a holelike Fermi surface in Ca1.5Sr0.5RuO4 in contrast to being electronlike in Sr2RuO4. Our observation of all three volume conserving Fermi surface sheets clearly demonstrates the absence of orbital-selective Mott transition, which was proposed theoretically to explain the unusual transport and magnetic properties in Ca1.5Sr0.5RuO4.  相似文献   

6.
We have conducted the first soft x-ray diffraction experiments from a bulk single crystal, studying the bilayer manganite La2-2xSr1+2xMn2O7 with x=0.475 in which we were able to access the (002) Bragg reflection using soft x rays. The Bragg reflection displays a strong resonant enhancement at the L(III) and L(II) manganese absorption edges. We demonstrate that the resonant enhancement of the magnetic diffraction of the (001) is extremely large, indeed so large that it exceeds that of the nonresonant Bragg diffraction. Resonant soft x-ray scattering of 3d transition metal oxides is the only technique for the atomic selective measurement of spin, charge, and orbital correlations in materials, such as high temperature superconductors, colossal magnetoresistance manganites, and charge stripe nickelates.  相似文献   

7.
Optical conductivity spectra sigma(omega) were used to investigate the effect of orbital ordering on the electronic structure of Ca2RuO4. Our LDA+U calculation predicts Ru 4d(xy) ferro-orbital ordering at the ground state, and well explains the present sigma(omega) as well as the reported O 1s x-ray absorption spectra. Variation of temperature (T) causes a large change of spectral weight over several eV as well as collapse of a charge gap accompanied by elongation of the c-axis Ru-O bond length. These results clearly indicate that the d(xy) orbital ordering plays a crucial role in the metal-insulator transition and the T-dependent electronic structure on a large energy scale.  相似文献   

8.
The character of the ground and optically excited states was investigated by quantum chemical calculations. We propose a rung ground state with V 3d(1)(xy)-O 2p(1)(y)-V 3d(1)(xy) character, instead of the conventional picture of one unpaired electron shared by 2 V ions. The unpaired electron on O is low-spin coupled to the V d electrons and spin density is predicted to be localized on vanadium. The absorption peak at 0.9 eV is assigned to a state with similar orbital occupations but a different spin coupling scheme, resulting in spin density localized on the bridging oxygen.  相似文献   

9.
Resonant x-ray diffraction performed at the L(II) and L(III) absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca2RuO4 single crystals. A large resonant enhancement due to electric dipole 2p-->4d transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at T(N)=110 K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru t(2g) electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca2RuO4.  相似文献   

10.
O 1s x-ray absorption study of the Mott insulator Ca(2)RuO(4) shows that the orbital population of the 4d t(2g) band dramatically changes with temperature. In addition, spin-resolved circularly polarized photoemission study of Ca(2)RuO(4) shows that a substantial orbital angular momentum is induced in the Ru 4d t(2g) band. Based on the experimental results and model Hartree-Fock calculations, we argue that the cooperation between the strong spin-orbit coupling in the Ru 4d t(2g) band and the small distortion of the RuO(6) octahedra causes the interesting changeover of the spin and orbital anisotropy as a function of temperature.  相似文献   

11.
We consider a superconducting state with mixed-symmetry order parameter components, e.g., d+is or d+id(') with d(') = d(xy). We argue for the existence of a new orbital magnetization mode which corresponds to oscillations of relative phase straight phi between two components around an equilibrium value of straight phi = pi / 2. It is similar to the "clapping" mode in superfluid 3He-A. We estimate the frequency of this mode omega(0)(B,T) depending on the field and temperature for the specific case of magnetic field induced d(') = d(xy) state. This mode is tunable with a magnetic field with omega(0)(B,T) approximately BDelta(0), where Delta(0) is the magnitude of the d-wave order parameter. We also estimate the velocity s(B,T) of this mode.  相似文献   

12.
The kappa-(ET)2X layered conductors (where ET stands for BEDT-TTF) are studied within the dimer model as a function of the diagonal hopping t' and Hubbard repulsion U. Antiferromagnetism and d-wave superconductivity are investigated at zero temperature using variational cluster perturbation theory (VCPT). For large U, Néel antiferromagnetism exists for t' < t(c2)', with t(c2)' approximately 0.9. For fixed t', as U is decreased (or pressure increased), a d(x2-y2) superconducting phase appears. When U is decreased further, then a d(xy) order takes over. There is a critical value of t(c1)' approximately 0.8 of t' beyond which the AF and dSC phases are separated by the Mott disordered phase.  相似文献   

13.
We put forward a scenario that explains the difference between the order-parameter character in arsenide (As) and phosphorous (P) iron-based superconductors. Using functional renormalization group to analyze it in detail, we find that nodal superconductivity on the electron pockets (hole pocket gaps are always nodeless) can naturally appear when the hole pocket at (π,π) in the unfolded Brillouin zone is absent, as is the case in LaOFeP. There, electron-electron interactions render the gap on the electron pockets softly nodal (of s(±) form). When the pocket of d(xy) orbital character is present, intraorbital interactions with the d(xy) part of the electron Fermi surface drives the superconductivity nodeless.  相似文献   

14.
Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d1 ferromagnetic Mott insulator with an ordered moment of approximately 0.2microB per formula unit and TC=6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet ground state anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.  相似文献   

15.
Electronic phase separation consisting of the metallic and insulating domains with 50-100 microm in diameter is found in the organic Mott system kappa-[(h8-BEDT-TTF)(1-x)(d8-BEDT-TTF)x]2Cu[N(CN)2]Br by means of scanning microregion infrared spectroscopy using the synchrotron radiation. The phase separation appears below the critical end temperature 35-40 K of the first-order Mott transition. The observation of the macroscopic size of the domains indicates a different class of the intrinsic electronic inhomogeneity from the nanoscale one reported in the inorganic Mott systems such as high-Tc copper and manganese oxides.  相似文献   

16.
Low temperature magnetic, thermal, and transport measurements in Ca2-xSrxRuO4 clarify the appearance of a cluster glass phase, after the evolution of a nearly ferromagnetic heavy-mass Fermi liquid from the spin-triplet superconductor Sr2RuO4. As the Mott transition is approached across a 2nd-order structural transition, both the magnetization and specific heat decrease considerably while the transport scattering rate diverges. A metamagnetic transition to a highly spin polarized state, with a local moment S=1/2, is observed. We argue that an orbital rearrangement with Ca substitution changes itinerant ferromagnetism to antiferromagnetism of localized moments.  相似文献   

17.
We demonstrate that optical pumping by circularly polarized light at the charge-transfer transition can induce spin and orbital polarizations in the strongly correlated Mott insulators R(2)CuO(4) (R=Pr, Nd, Sm) providing a means of ultrafast nonlinear manipulation of spin states on time scales of less than 150 fs. We propose a model which includes both orbital- and spin-related processes possessing different spectral and temporal properties. This allows us to model the optical response of antiferromagnetic Mott insulators to circularly polarized light and estimate the spin relaxation time as tau(s) approximately 30-50 fs.  相似文献   

18.
We investigated the ab-plane absorption spectra of RMnO3 (R=La, Pr, Nd, Gd, and Tb) thin films. As the ionic radius of the R ion decreases, we observed a drastic suppression of the 2 eV peak, i.e., the intersite optical transition between spin- and orbital-aligned states across the Mott gap. We found that, in addition to orbital rotation, orbital mixing in the orbital-ordered state should play an important role in the suppression of 2 eV peak. We also found that the spectral weight of 2 eV peak is proportional to the A-type antiferromagnetic ordering temperature, which suggests that the magnetic interaction should be sensitively coupled to the orbital degree of freedom.  相似文献   

19.
A detailed study of the paramagnetic to ferromagnetic phase transition in the one-band Hubbard model in the presence of binary-alloy disorder is presented. The influence of the disorder (with concentrations x and 1-x of the two alloy ions) on the Curie temperature T(c) is found to depend strongly on electron density n. While at high densities, n>x, the disorder always reduces T(c); at low densities, n相似文献   

20.
We develop a theory of the Berry-phase effect in anomalous transport in ferromagnets driven by statistical forces such as the gradient of temperature or chemical potential. Here a charge Hall current arises from the Berry-phase correction to the orbital magnetization rather than from the anomalous velocity, which does not exist in the absence of a mechanical force. A finite-temperature formula for the orbital magnetization is derived, which enables us to provide an explicit expression for the off-diagonal thermoelectric conductivity, to establish the Mott relation between the anomalous Nernst and Hall effects, and to reaffirm the Onsager relations between reciprocal thermoelectric conductivities. A first-principles evaluation of our expression is carried out for the material CuCr(2)Se(4-x)Br(x), obtaining quantitative agreement with a recent experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号