首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of Scanning tunneling microscopy (STM), the Angle Resolved Photo Emission spectroscopy (ARPES) and neutron scattering in condensed matter systems, therefore achieve the putative goals of quantum simulations  相似文献   

2.
We propose an order parameter to characterize valence-bond-solid (VBS) states in quantum spin chains, given by the ground-state expectation value of a unitary operator appearing in the Lieb-Schultz-Mattis argument. We show that the order parameter changes the sign according to the number of valence bonds (broken valence bonds) at the boundary for periodic (open) systems. This allows us to determine the phase transition point in between different VBS states. We demonstrate this theory in the successive dimerization transitions of the bond-alternating Heisenberg chains, using the quantum Monte Carlo method.  相似文献   

3.
We examine the stability of the valence bond solid (VBS) phase against the Dzyaloshinskii-Moriya (DM) interaction in the bipartite lattice. We consider the VBS states in the AKLT model as well as the one in the Sandvik model in the 4×L lattice. We found that the VBS is very stable against the DM interaction qin the AKLT model. There is no quantum phase transition in the AKLT+DM case. However, the VBS spin gap closes in the Sandvik model due to the DM interaction.  相似文献   

4.
Making the assumption that high-energy fermions exist in the two dimensional spin- 1/2 Heisenberg antiferromagnet, we present predictions based on the pi-flux ansatz for the dynamic structure factor when the antiferromagnet is subject to a uniform magnetic field. The main result is the presence of gapped excitations in a momentum region near (pi,pi) with energy lower than that at (pi,pi). This is qualitatively different from spin-wave theory predictions and may be tested by experiments or by quantum Monte Carlo.  相似文献   

5.
Yan Chen  Jinwu Ye 《哲学杂志》2013,93(35):4484-4491
A duality transformation in quantum field theory is usually established first through partition functions. It is always important to explore the dual relations between various correlation functions in the transformation. Here, we explore such a dual relation to study quantum phases and phase transitions in an extended boson Hubbard model at 1/3 (2/3) filling on a triangular lattice. We develop systematically a simple and effective way to use the vortex degrees of freedom on dual lattices to characterize both the density wave and valence bond symmetry breaking patterns of the boson insulating states in the direct lattices. In addition to a checkerboard charge density wave (X-CDW) and a stripe CDW, we find a novel CDW-VBS phase which has both local CDW and local valence bond solid (VBS) orders. Implications for Quantum Monte Carlo simulations are addressed. The possible experimental realizations of cold atoms loaded on optical lattices are discussed.  相似文献   

6.
Ning Xi 《中国物理 B》2022,31(5):57501-057501
We study the critical scaling and dynamical signatures of fractionalized excitations at two different deconfined quantum critical points (DQCPs) in an S = 1/2 spin chain using the time evolution of infinite matrix product states. The scaling of the correlation functions and the dispersion of the conserved current correlations explicitly show the emergence of enhanced continuous symmetries at these DQCPs. The dynamical structure factors in several different channels reveal the development of deconfined fractionalized excitations at the DQCPs. Furthermore, we find an effective spin-charge separation at the DQCP between the ferromagnetic (FM) and valence bond solid (VBS) phases, and identify two continua associated with different types of fractionalized excitations at the DQCP between the X-direction and Z-direction FM phases. Our findings not only provide direct evidence for the DQCP in one dimension but also shed light on exploring the DQCP in higher dimensions.  相似文献   

7.
In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO_3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.  相似文献   

8.
Multipartite entanglement, measured by the geometric entanglement (GE), is discussed for integer spin Valance-Bond-Solid (VBS) state respectively with periodic boundary condition (PBC) and open boundary condition (OBC) in this paper. The optimization in the definition of geometric entanglement can be reduced greatly by exploring the symmetry of VBS state, and then the fully separable state can be determined explicitly. Numerical evaluation for GE by the random simulation is also implemented in order to demonstrate the validity of the reductions. Our calculations show that GE is saturated by a finite value with the increment of particle number, that means that the total entanglement for VBS state would be divergent under the thermodynamic limit. Moreover it is found that the scaling behavior of GE with spin number s is fitted as α log(s + β/s + γ)+δ, in which the values of the parameters α, β, γ, σ are only dependent on the parity of spin s. A comparison with entanglement entropy of VBS state is also made, in order to demonstrate the essential differences between multipartite and bipartite entanglement in this model.  相似文献   

9.
Leon Balents 《Annals of Physics》2007,322(11):2635-2664
We present a general framework for describing the quantum phases obtained by doping paramagnetic Mott insulators on the square lattice. The undoped insulators are efficiently characterized by the projective transformations of various fields under the square lattice space group (the PSG). We show that the PSG also imposes powerful constraints on the doped system, and on the effective action for the vortex and Bogoliubov quasiparticle excitations of superconducting states. This action can also be extended across transitions to supersolid or insulating states at non-zero doping. For the case of a valence bond solid (VBS) insulator, we show that the doped system has the same PSG as that of elementary bosons with density equal to the density of electron Cooper pairs. We also discuss aspects of the action for a d-wave superconductor obtained by doping a “staggered-flux” spin liquid state.  相似文献   

10.
We report on a valence bond projector Monte Carlo simulation of the cubic lattice quantum Heisenberg model with additional higher-order exchange interactions in each unit cell. The model supports two different valence bond solid (VBS) ground states. In one of these states, the dimer pattern is a three-dimensional analogue of the columnar pattern familiar from two dimensions. In the other, the dimers are regularly arranged along the four main diagonals in 1/8 of the unit cells. The phases are separated from one another and from a Néel phase by strongly first-order boundaries. Our results strengthen the case for exotic transitions in two dimensions, where no discontinuities have been detected at the Heisenberg Néel-VBS transition driven by four-spin plaquette interactions.  相似文献   

11.
12.
Measuring vector boson scattering(VBS) precisely is an important step toward understanding the electro weak symmetry breaking of and detecting new physics beyond the standard model(SM).Herein,we propose a neural network that compresses the features of the VBS data into a three-dimensional latent space.The consistency of the SM predictions and experimental data is tested via binned log-likelihood analysis in the latent space.We show that the network is capable of distinguishing different polarization modes of WWjj production in both di-and semileptonic channels.The method is also applied to constrain the effective field theory and two Higgs Doublet Model.The results demonstrate that the method is sensitive to general new physics contributing to the VBS.  相似文献   

13.
We argue that the complex numbers are an irreducible object of quantum probability: this can be seen in the measurements of geometric phases that have no classical probabilistic analogue. Having the complex phases as primitive ingredient implies that we need to accept nonadditive probabilities. This has the desirable consequence of removing constraints of standard theorems about the possibility of describing quantum theory with commutative variables. Motivated by the formalism of consistent histories and keeping an analogy with the theory of stochastic processes, we develop a (statistical) theory of quantum processes: they are characterized by the introduction of a density matrix on phase space paths (it thus includes phase information) and fully reproduces quantum mechanical predictions. We can write quantum differential equations (in analogy to Langevin equation) that could be interpreted as referring to individual quantum systems. We describe the reconstruction theorem by which a quantum process can yield the standard Hilbert space structure if the Markov property is imposed. We discuss the relevance of our results for the interpretation of quantum theory (a sample space is possible if probabilities are nonadditive) and quantum gravity (the Hilbert space arises here after the consideration of a background causal structure).  相似文献   

14.
Using ground-state projector quantum Monte Carlo simulations in the valence-bond basis, it is demonstrated that nonfrustrating four-spin interactions can destroy the Néel order of the two-dimensional S=1/2 Heisenberg antiferromagnet and drive it into a valence-bond solid (VBS) phase. Results for spin and dimer correlations are consistent with a single continuous transition, and all data exhibit finite-size scaling with a single set of exponents, z=1, nu=0.78+/-0.03, and eta=0.26+/-0.03. The unusually large eta and an emergent U(1) symmetry, detected using VBS order parameter histograms, provide strong evidence for a deconfined quantum critical point.  相似文献   

15.
Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen–Specker's theorem (it has distributive logic). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Copenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.  相似文献   

16.
We use spin-density-functional theory to study recently reported hysteretic magnetoresistance rho(xx) spikes in Mn-based 2D electron gases [Phys. Rev. Lett. 89, 266802 (2002)10.1103/PhysRevLett.89.266802]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum Hall ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in rho(xx), we predict hysteretic dips in the Hall resistance rho(xy). Our theory, without domain walls, satisfactorily explains the recent data.  相似文献   

17.
18.
In the quantum rotor model with random exchange interactions having a nonzero mean, three phases, a (i) phase (Bose) glass, (ii) superfluid, and (iii) Mott insulator, meet at a bicritical point. We demonstrate that proximity to the bicritical point and the coupling between the energy landscape and the dissipative degrees of freedom of the phase glass lead to a metallic state at T = 0. Consequently, the phase glass is unique in that it represents a concrete example of a metallic state that is mediated by disorder, even in 2D. We propose that the experimentally observed metallic phase which intervenes between the insulator and the superconductor in a wide range of thin films is in actuality a phase glass.  相似文献   

19.
李玲  李伯臧  梁九卿 《物理学报》2001,50(11):2077-2082
根据Lewis-Riesenfeld的量子不变量理论,计算了一维动壁无限深势阱内频率随时间变化的谐振子的Lewis-Riesenfeld相位,发现刘登云文中“非绝热Berry相位”与Lewis-Riesenfeld相位中的几何部分完全一致.也许更为重要的是,证明了至少对于做正弦振动的边界,在绝热近似下,该系统不存在非零的Berry相位. 关键词: Berry相位 Lewis-Riesenfeld相位 量子不变量 动边界  相似文献   

20.
We show the existence of Lorentz invariant Berry phases generated, in the Stueckelberg–Horwitz–Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturbation of the azimuthal symmetry of the oscillator. They are computed numerically by using time independent perturbation theory and the definition of the Berry phase generalized to the framework of SHP relativistic quantum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号