首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Supposing free-fall conditions the velocity distribution functions of atoms and ions in various levels in gas discharges at low pressures are calculated. In particular, plasmas at high degrees of ionization are considered. Solving the Boltzmann equation for the motions transverse to the wall of the discharge tube it is shown that the velocity distribution functions can considerably deviate from the Maxwellian and become non-isotropic. Inelastic collisions with electrons and the ionization by electron impacts considerably determine the velocity distribution function of the neutral atoms. The velocity distribution function of the ions is also essentially determined by the electric field within the plasma. For the motions transverse to the wall the half widths of the velocity distribution functions do not only depend on the temperature of the wall, but on the electron density and on the electron temperature as well. At small electron densities the half widths for excited atoms and for ions can be narrower than the one for the ground state atoms. The charge exchange between atoms and ions is shortly taken into consideration.  相似文献   

2.
The charge density of vector particles, for example W(+/-), may change sign. The effect manifests itself even for a free propagation, when the energy of the W-boson satisfies epsilon>sqrt[2]m and the standing wave is considered. The charge density of W also changes sign in a vicinity of a Coulomb center. For an arbitrary vector boson (e.g., for spin 1 mesons), this effect depends on the g-factor. An origin of this surprising effect is traced to the electric quadrupole moment and spin-orbit interaction of vector particles; their contributions to the current have a polarization nature. The corresponding charge density equals rho(Pol)=-inverted Delta . P, where P is an effective polarization vector that depends on the quadrupole moment and spin-orbit interaction. This density oscillates in space, producing zero contribution to the total charge.  相似文献   

3.
A programme is developed to calculate the polarizations of the radiation emitted after electron impact excitation. The fully relativistic distorted-wave method is used in cross-section calculations. The programme is applied to He- and Li-like ions. The calculated values of line polarization are compared with other theoretical results and experimental values. For He-like U, at lower incident energy, the present polarization agrees with the other theoretical ones within 1%, while at higher energy, the differences increase up to about 10%. For He-like Fe and Ti, the present results of polarization degree for most of the lines agree with the experimental data within the experimental error bars. For the Li-like Ti line q (ls2s2p^2p3/2 to ls^22s), the present value of the polarization agree excellently with another theoretical one, and both the values are consistent with the measured data within the experimental error bar.  相似文献   

4.
利用欧拉两相流模型和沸腾换热模型计算了高功率微波管收集极的散热问题。在给出电子束能量沉积规律的基础上,得到了热源项在收集极及冷却水中的分布形式。利用CFD软件计算了脉宽为45ns、重频为5OHz、平均功率为27kW电子束作用下的收集极温度分布,重点研究了冷却水流速对散热效果的影响。研究结果表明,冷却水流速为1.5m/s时,内壁面稳态峰值温度超过了收集极材料的熔点,会导致一定时间后收集极损坏;散热峰值处对流换热大约占总换热量的71.7%,激冷换热大约占28.1%,相变换热占0.2%。冷却水流速小于5m/s时,收集极最高温度随流速增加快速下降;5~10m/s时,温度下降缓慢;超过10m/s后,温度下降速度增大。针对该电子束条件,收集极安全工作要求冷却水流速不得低于5m/s。  相似文献   

5.
The formation of a sheath in front of a negatively biased electrode (collector) that emits electrons is studied by a one‐dimensional fluid model. Electron and ion emission coefficients are introduced in the model. It is assumed that the electrode is immersed in a plasma that contains energetic electrons. The electron velocity distribution function is assumed to be a sum of two Maxwellian distributions with two different temperatures, while the ions and the emitted electrons are assumed to be monoenergetic. The condition for zero electric field at the collector is derived. Using this equation the dependence of electron and ion critical emission coefficients on various parameters ‐ like the ratio between the hot and cool electron density, the ratio between hot and cool electron temperature and the initial velocity of secondary electrons ‐ is calculated for a floating collector. A modification of the Bohm criterion due to the presence of hot and emitted electrons is also given. The transition between space charge limited and temperature limited electron emission for a current‐carrying collector is also analyzed. The critical potential, where this transition occurs, is calculated as a function of several parameters like the Richardson emission current, the ratio between the hot and cool electron density, the ratio between hot and cool electron temperature and the initial velocity of secondary electrons. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The Helmholtz free energy F of the 2D electron fluid is calculated using a mapping to a classical Coulomb fluid [Phys. Rev. Lett. 87, 206404 (2001)]]. For density parameters r(s) such that approximately 25>r(s), the fluid is unpolarized at all temperatures t=T/E(F), where E(F) is the Fermi energy. For higher r(s), the system is fully spin polarized for t smaller than approximately 0.35, and partially polarized for approximately 0.35相似文献   

7.
We use spin-density-functional theory to study recently reported hysteretic magnetoresistance rho(xx) spikes in Mn-based 2D electron gases [Phys. Rev. Lett. 89, 266802 (2002)10.1103/PhysRevLett.89.266802]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum Hall ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in rho(xx), we predict hysteretic dips in the Hall resistance rho(xy). Our theory, without domain walls, satisfactorily explains the recent data.  相似文献   

8.
H. Nakano  K. Hattori  H. Daimon 《Surface science》2007,601(22):5088-5092
We systematically studied the formation of various iron-silicide phases, grown on Si(0 0 1) surfaces by solid phase epitaxy, with scanning tunneling microscopy, low-energy electron diffraction and reflection high-energy electron diffraction. We found and studied the phases of c(2 × 2) islands, rectangle-like islands, elongated islands, layered islands, dome-like islands, eddy and cracked structures, and small clusters. A schematic phase diagram of these phases is successfully summarized against iron coverage at room temperature and subsequent annealing temperature.  相似文献   

9.
The efficiency of generating a helical current in magnetic islands for the purpose of suppression of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) is studied experimentally in the ASDEX Upgrade tokamak. It is found that the efficiency of generating helical current by continuous current drive in a rotating island drops drastically as the width 2d of the co-ECCD driven current becomes larger than the island width W. However, by modulating the co-ECCD in phase with the rotating islands O point, the efficiency can be recovered. The results are in good agreement with theoretical calculations taking into account the equilibration of the externally driven current on the island flux surfaces. The result is especially important for large next-step fusion devices, such as ITER, where 2d>W is expected to be unavoidable during NTM suppression, suggesting that modulation capability should be foreseen.  相似文献   

10.
Current-driven domain-wall motion is studied in (Ga,Mn)(As,P) ferromagnetic semiconducting tracks with perpendicular anisotropy. A linear steady state flow regime is observed over a large temperature range of the ferromagnetic phase (0.1T(c)相似文献   

11.
Short pulse laser interactions at intensities of 2×10(21) W cm(-2) with ultrahigh contrast (10(-15)) on submicrometer silicon nitride foils were studied experimentally by using linear and circular polarizations at normal incidence. It was observed that, as the target decreases in thickness, electron heating by the laser begins to occur for circular polarization leading to target normal sheath acceleration of contaminant ions, while at thicker targets no acceleration or electron heating is observed. For linear polarization, all targets showed exponential energy spreads with similar electron temperatures. Particle-in-cell simulations demonstrate that the heating is due to the rapid deformation of the target that occurs early in the interaction. These experiments demonstrate that finite spot size effects can severely restrict the regime suitable for radiation pressure acceleration.  相似文献   

12.
The formation mechanism of the Q branch excited luminescence polarization of complex molecules in the vapor phase is considered in massive asymmetrical top model. The calculated maps are given together with available experimental values of the degree of polarization and Q branch intensities as functions of the relation of the principal inertia moments and of the absorbing and emitting oscillators orientation. The calculated and measured values of the degree of polarization are compared.  相似文献   

13.
14.
Gd islands were grown on W(1 1 0) surface by evaporating Gd on the substrate at room temperature and subsequent annealing. STM images reveal in many cases islands which have a deep hole inside them. The appearance of the hole is associated with the application of an AC field. No such holes appear when the sample is heated by a DC current. We show that this can be explained by the combined affect of the AC field and the barrier to diffusion introduced by steps that can create a nucleus for further growth of an island which includes a hole in the middle. This may be generalized to a technique of tailoring the size, shape and distances of islands by, for example, two orthogonal AC fields with a phase delay of 90° between them.  相似文献   

15.
Radiative emission of fast electrons in collision with an “ion‐sphere” electron distribution in dense plasmas is under consideration. The electron structure of the ion sphere is calculated ab initio using self‐consistent solution of both bound and free electron distribution inside the sphere. Two radiation channels are included: emission of the colliding electron itself in static potential (conventional or static Bremsstrahlung) and the emission of “ion sphere” medium due to its polarization by the colliding electron (polarization Bremsstrahlung). The last one is calculated in the frame of local plasma density approximation. Interference between conventional and polarization Bremsstrahlung is taken into account. It is shown that spectral cross section of the process has characteristic features depending on plasma density and ionization stage of plasma ions. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
L. Nocera 《Annals of Physics》2008,323(10):2482-2504
Electrostatic tripolar regions in plasmas develop a skewness of their own electric potential waveform as a peculiar morphological property, which distinguishes them from symmetric electrostatic solitary waves. Within the collision-less, kinetic treatment developed here, this property holds if the velocity distributions of electrons and ions are singular in value, irrespective of their smoothness at the region’s boundary and of the smoothness of the potential waveform and of the electron and ion density distributions. These singularities are integrable, and are of the logarithmic and jump type: the former occur at isolated points in phase space; the latter occur on the left branch of the electron separatrix and on the left branch of the ion sub-separatrix. The distributions are non-negative if, at its local extrema, the potential waveform is skewed to the left, in agreement with observations, and if the skewness is smaller than a given bound: a sufficient condition for such skewness to be small about the minimum of the potential waveform is that a sufficiently fast electron beam exists on the high-potential boundary of the tripolar region. In those special cases in which the particle distributions are continuous in value, the above mentioned singularities affect their space and velocity derivatives. These results could be extracted from very general considerations on the degree of smoothness of the spatial distribution of the electric potential and on the non-negativity of the electron and ion distributions, without the assistance of any specific models.  相似文献   

17.
The acoustical and dielectric properties of glycine phosphite crystals are investigated in the temperature range of a ferroelectric phase transition. The acoustic anomalies for longitudinal waves along the X, Y, and Z crystallographic axes (where Y is the spontaneous polarization axis) are analyzed in the framework of the Landau theory. It is shown that pronounced acoustic anomalies of the velocity can be quantitatively described within the pseudoproper ferroelectric phase transition model with due regard for the long-range dipole-dipole interaction. For longitudinal acoustic waves propagating along the polar crystal axis, the striction anomaly of the velocity is only partly suppressed by the long-range dipole-dipole forces and an abrupt jump in the velocity is observed in the vicinity of the phase transition. The temperature coefficients of the velocity in the paraphase are determined. The striction contribution and the contributions biquadratic in the order parameter and in the strain to the velocity anomaly are separated.  相似文献   

18.
为了控制光场感应电离等离子体的温度以使得基于光场感应电离机制的X射线激光辐射获得更高的增益值,利用准静态隧道电离模型,定量计算了电子剩余能量与激光偏振参量、波长(频率)、激光强度以及电离介质电离能的变化关系。计算结果表明线偏振短波长激光以及高电离能介质产牛的等离子体中电子剩余能比较低,因此适合用作复合机制X射线激光;对于低价离子存偏振度α介于0~1之间的某一处最高,因此,可以通过调整偏振度α,获得某一椭圆偏振光,会更有利于基于光场感应电离电子碰撞机制X射线激光增益的提高。  相似文献   

19.
在表面晶格动力学理论的框架下,采用改进分析型嵌入原子法模型模拟W(100)表面沿(Γ)(L) 、(L)(M) 和(Γ)(M)对称方向上的声子色散频谱,并计算不同对称点处的极化矢量.按照表面模的判定依据和标记方法绘制不同对称方向上的表面模,并讨论表面模的分布范围和模式耦合现象.基于计算所得的极化矢量,构建近表面原子层的振动态分布,分析不同对称方向上表面模的局域特征和极化方式.以极化矢量为考察对象,直观、形象地展示了表面模色散支之间的避免交叉现象和独立性实交叉现象.  相似文献   

20.
为研究Al膜受短脉冲激光作用时的能量传输过程,建立了一维半经典双温热传导模型。根据材料加工过程的熔化现象,对模型的相变区域进行有效设置。通过有限元法求解,得到晶格温度随时间分布的规律。根据自由电子气理论优化了模型,得到Al膜表面反射率和热吸收系数随时间的分布图。得到了激光辐照所产生热电场的分布规律,并分析了电子温度梯度对其影响。描绘出电子漂移运动速度的分布规律,证实激光作用产生的热电场是电子漂移运动的主导因素,发现最大漂移速度位置随时间的延长而加深。对激光作用后的晶格温度进行了区域性分析,定义了过热加热区,并得到激光烧蚀深度随时间的变化关系。实验结果表明,不同功率皮秒激光烧蚀Al膜的深度接近于理论计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号