共查询到20条相似文献,搜索用时 0 毫秒
1.
Whether common noise can induce complete synchronization in chaotic systems has been a topic of great relevance and long-standing controversy. We first clarify the mechanism of this phenomenon and show that the existence of a significant contraction region, where nearby trajectories converge, plays a decisive role. Second, we demonstrate that, more generally, common noise can induce phase synchronization in nonidentical chaotic systems. Such a noise-induced synchronization and synchronization transitions are of special significance for understanding neuron encoding in neurobiology. 相似文献
2.
The effects of noise on phase synchronization (PS) of coupled chaotic oscillators are explored. In contrast to coupled periodic oscillators, noise is found to enhance phase synchronization significantly below the threshold of PS. This constructive role of noise has been verified experimentally with chaotic electrochemical oscillators of the electrodissolution of Ni in sulfuric acid solution. 相似文献
3.
We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series. 相似文献
4.
We devised a new method of data mining for a large-scale database. In the method, a network of locally coupled phase oscillators subject to Kuramoto's model substitutes for given multivariate data to generate major features through phase locking of the oscillators, i.e., phase transition of the data set. We applied the method to the national database of care needs certification for the Japanese public long-term care insurance program, and found three major patterns in the aging process of the frail elderly. This work revealed the latent utility of Kuramoto's model for data processing. 相似文献
5.
《Physica D: Nonlinear Phenomena》2005,200(1-2):81-104
We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators. 相似文献
6.
We study the effect of noncoherence on the onset of phase synchronization of two coupled chaotic oscillators. Depending on the coherence properties of oscillations characterized by the phase diffusion, three types of transitions to phase synchronization are found. For phase-coherent attractors this transition occurs shortly after one of the zero Lyapunov exponents becomes negative. At rather strong phase diffusion, phase locking manifests a strong degree of generalized synchronization, and occurs only after one positive Lyapunov exponent becomes negative. For intermediate phase diffusion, phase synchronization sets in via an interior crises of the hyperchaotic set. 相似文献
7.
We report a general phenomenon concerning the effect of noise on phase synchronization in coupled chaotic oscillators: the average phase-synchronization time exhibits a nonmonotonic behavior with the noise amplitude. In particular, we find that the time exhibits a local minimum for relatively small noise amplitude but a local maximum for stronger noise. We provide numerical results, experimental evidence from coupled chaotic circuits, and a heuristic argument to establish the generality of this phenomenon. 相似文献
8.
We numerically investigate the dynamics of a closed chain of unidirectionally coupled oscillators in a regime of homoclinic chaos. The emerging synchronization regimes show analogies with the experimental behavior of a single chaotic laser subjected to a delayed feedback. 相似文献
9.
We consider the behavior of Stuart-Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior. 相似文献
10.
We analyze a large system of limit-cycle oscillators with mean-field coupling and randomly distributed natural frequencies. We prove that when the coupling is sufficiently strong and the distribution of frequencies has sufficiently large variance, the system undergoes amplitude death-the oscillators pull each other off their limit cycles and into the origin, which in this case is astable equilibrium point for the coupled system. We determine the region in couplingvariance space for which amplitude death is stable, and present the first proof that the infinite system provides an accurate picture of amplitude death in the large but finite system. 相似文献
11.
We propose a technique to control coherent collective oscillations in ensembles of globally coupled units (self-sustained oscillators or maps). We demonstrate numerically and theoretically that a time delayed feedback in the mean field can, depending on the parameters, enhance or suppress the self-synchronization in the population. We discuss possible applications of the technique. 相似文献
12.
A new type of intermittent behavior is described to occur near the boundary of the phase synchronization regime of coupled chaotic oscillators. This mechanism, called ring intermittency, arises for sufficiently high initial mismatches in the frequencies of the two coupled systems. The laws for both the distribution and the mean length of the laminar phases versus the coupling strength are analytically deduced. Very good agreement between the theoretical results and the numerically calculated data is shown. We discuss how this mechanism is expected to take place in other relevant physical circumstances. 相似文献
13.
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary
conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the
value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions
as well as for a chain with fixed ends. We compare the results with those calculated numerically.
相似文献
14.
Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators
We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength. This results in a maximal frequency disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic decrease in frequency difference sets in only for larger coupling values. All experimental results are supported by numerical simulations of two coupled Chua models. 相似文献
15.
Frequency locking without phase locking of two coupled nonlinear oscillators is experimentally demonstrated. This synchronization regime is found for two coupled laser modes, beyond the phase-locking range fixed by Adler's equation, because of a resonance mechanism. Specifically, we show that the amplitudes of the two modes exhibit strong fluctuations that produce average frequency synchronization, even if the instantaneous phases are unlocked. The experimental results are in good agreement with a theoretical model. 相似文献
16.
Phase synchronization of chaotic oscillators 总被引:3,自引:0,他引:3
17.
Benjamin Friedrich 《The European physical journal. Special topics》2016,225(11-12):2353-2368
In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways. 相似文献
18.
Radiophysics and Quantum Electronics - 相似文献
19.
We show that a wide class of uncoupled limit-cycle oscillators can be in-phase synchronized by common weak additive noise. An expression of the Lyapunov exponent is analytically derived to study the stability of the noise-driven synchronizing state. The result shows that such a synchronization can be achieved in a broad class of oscillators with little constraint on their intrinsic property. On the other hand, the leaky integrate-and-fire neuron oscillators do not belong to this class, generating intermittent phase slips according to a power law distribution of their intervals. 相似文献