首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S. A. Teys 《JETP Letters》2013,96(12):794-802
The intermediate stages of the formation of a Ge wetting layer on Si(111) and Si(100) surfaces under quasiequilibrium grow conditions have been studied by means of scanning tunneling microscopy. The redistribution of Ge atoms and relaxation of mismatch stresses through the formation of surface structures of decreased density and faces different from the substrate orientation have been revealed. The sites of the nucleation of new three-dimensional Ge islands after the formation of the wetting layer have been analyzed. Both fundamental differences and common tendencies of atomic processes at the formation of wetting layers on Si(111) and Si(100) surfaces have been demonstrated. The density of three-dimensional nuclei on the Si(111) surface is determined by changed conditions for the surface diffusion of Ge adatoms after change in the surface structure. Transition to three-dimensional growth on the Si(100) surface is determined by the nucleation of single {105} faces on the rough Ge(100) surface.  相似文献   

2.
We analyze Ge hut island formation on Si(001), using first-principles calculations of energies, stresses, and their strain dependence of Ge/Si(105) and Ge/Si(001) surfaces combined with continuum modeling. We give a quantitative assessment on strain stabilization of Ge(105) facets, estimate the critical size for hut nucleation or formation, and evaluate the magnitude of surface stress discontinuity at the island's edge and its effect on island stability.  相似文献   

3.
We have investigated the nucleation and evolution of germanium (Ge) nanodot (ND)s taking place while depositing Ge onto the silicon (Si) (1 1 1) surfaces with ultra-thin Si oxide films by using ultra-high vacuum in situ high-resolution transmission electron microscopy in the profile-imaging geometry. Various types of growth phenomena such as nucleation, growth and coalescence of Ge NDs have successfully been observed. The results show that the growth phenomena of the Ge NDs are dramatically rapid after their size reaches the size of the critical nucleus. The critical nucleus size estimated from a model using the cohesive energy of the Ge NDs has been consistent with observed one.  相似文献   

4.
高飞  冯琦  王霆  张建军 《物理学报》2020,(2):256-261
纳米线的定位生长是实现纳米线量子器件寻址和集成的前提.结合自上而下的纳米加工和自下而上的自组装技术,通过分子束外延生长方法,在具有周期性凹槽结构的硅(001)图形衬底上首先低温生长硅锗薄膜然后升温退火,实现了有序锗硅纳米线在凹槽中的定位生长,锗硅纳米线的表面晶面为(105)晶面.详细研究了退火温度、硅锗的比例及图形周期对纳米线形成与否,以及纳米线尺寸的影响.  相似文献   

5.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

6.
Self-organized Ge islands grown on patterned Si(001) substrates have been investigated. Selective epitaxial growth (SEG) of Si is carried out with gas-source molecular beam epitaxy to form Si stripe mesas followed by subsequent Ge island growth. Self-aligned Ge islands with regular spacing are formed on the <110>-oriented ridges of the Si mesas. The regular spacing is driven by the repulsive interaction between the neighbor islands through the substrates. A mono-modal distribution of the islands has been observed on the ridges of the Si mesas. The spatial confinement as well as the preferential nucleation is believed to be the mechanism of this alignment of the self-organized Ge islands. Received: 16 July 1999 / Accepted: 6 August 1999 / Published online: 24 March 2000  相似文献   

7.
Single and stacked layers of Ge/Si quantum dots were grown in SiO2 windows patterned by electron-beam lithography on oxidized Si (0 0 1) substrates. The growth of a silicon buffer layer prior to Ge deposition is found to be an additional parameter for adjusting the Ge-dot nucleation process. We show that the silicon buffer layer evolves towards [1 1 3]-faceted pyramids, which reduces the area of the topmost (0 0 1) surface available for Ge nucleation. By controlling the top facet area of the Si buffer layers, only one dot per circular window and a high cooperative arrangement of dots on a striped window can be achieved. In stacked layers, the dot homogeneity can be improved through the adjustment of the Ge deposited amount in the upper layers. The optical properties of these structures measured by photoluminescence spectroscopy are also reported. In comparison with self-assembled quantum dots, we observed, both in single and stacked layers, the absence of the wetting-layer component and an energy blue shift, confirming therefore the dot formation by selective growth.  相似文献   

8.
Abstracts     
Abstract

Isothermal annealing of amorphous Si and Ge has been performed by picosecond pulsed laser irradiation of free-standing films. It is found that the laser induced nucleation rate is about 1021-5.1022 cm?3 s?1 (Si) and 1023-1025 cm?3 s?1 (Ge) near the melting point. Arrhenius plots of the nucleation rate show that nucleation is thermally activated with an activation energy of about ΔE = 1.8 ± 0.1 eV (Ge) and ΔE = 2.47 ± 0.15 eV (Si).  相似文献   

9.
We have investigated the nucleation thermodynamics and kinetics of the Ge quantum dot (QD) self-assembly on the Au-patterned Si substrates based on the surface chemical potential theory. It is find that the minimum chemical potential on the substrate surface is located at the center site of the square lattice constructed by Au islands, which indicates that the nucleation of QD is thermodynamically favorable at the center site. The nucleation probability of QD at the center site is kinetically calculated by the mechanochemical potential-based approach. The influence of the surface orientation of Si substrates on the QD shape is addressed by the surface chemical potential theory.  相似文献   

10.
We investigated the initial Ge nucleation and Ge island growth on a Si(1 1 3) surface using low energy electron microscopy and low energy electron diffraction. The sample temperature was varied systematically between 380 °C and 590 °C. In this range, a strong temperature dependence of the island shape is observed. With increasing temperature the Ge islands are elongated in the direction. Simultaneously, the average island size increases while their density decreases. From the Arrhenius-like behaviour of the island density, a Ge adatom diffusion barrier height of about 0.53 eV is deduced.  相似文献   

11.
A scanning tunneling microscope (STM) capable of imaging during crystal growth from the vapour is described. This method (MBSTM) opens the possibility to follow the growth process of semiconductor molecular beam epitaxy (MBE) in vivo. The ability of the microscope to access the evolution of specific features during growth is demonstrated by images of the Si homoepitaxy. The transition from initial multilayer to layer-by-layer growth was imaged in Si(1 1 1) homoepitaxy. In Si/Si(1 0 0) homoepitaxy the fractional coverage of non-equivalent terraces was studied as function of coverage and a theoretically predicted transient growth mode was observed. In Ge on Si(1 1 1) heteroepitaxy the nucleation of 3D Ge islands was observed. When 3D islands occurred on the surface an etching of the 2D Stranski-Krastanov layer was observed.  相似文献   

12.
《Solid State Communications》2002,121(9-10):505-508
Energetics and structural relaxations related to the surface complexes formed by mixed Si–Ge and C–C dimer adsorption on predefined adsorption sites on a (2×1) reconstructed Si (001) surface are investigated. Monte Carlo simulated annealing procedure is used in conjugation with Tersoff's semi-empirical potentials. The reliability check of the method is performed by comparing our results for the case of Si–Ge dimer adsorption with the results reported by using ab initio pseudo-potential calculations. The agreement is found to be good. For carbon dimer adsorption, the nucleation centers are found to be different from those for Si and Ge. It is seen that carbon has a tendency to get adsorbed at the dangling bond site, or to form a Si–C–C–Si chain like structure under specific conditions.  相似文献   

13.
Lattice-mismatch-induced surface or film stress has significant influence on the morphology of heteroepitaxial films. This is demonstrated using Sb surfactant-mediated epitaxy of Ge on Si(111). The surfactant forces a two-dimensional growth of a continous Ge film instead of islanding. Two qualitatively different growth regimes are observed. Elastic relaxation: Prior to the generation of strain-relieving defects the Ge film grows pseudomorphically with the Si lattice constant and is under strong compressive stress. The Ge film relieves strain by forming a rough surface on a nm scale which allows partial elastic relaxation towards the Ge bulk lattice constant. The unfavorable increase of surface area is outbalanced by the large decrease of strain energy. The change of film stress and surface morphology is monitored in situ during deposition at elevated temperature with surface stress-induced optical deflection and high-resolution spot profile analysis low-energy electron diffraction. Plastic relaxation: After a critical thickness the generation of dislocations is initiated. The rough phase acts as a nucleation center for dislocations. On Si(111) those misfit dislocations are arranged in a threefold quasi periodic array at the interface that accommodate exactly the different lattice constants of Ge and Si. Received: 1 April 1999 / Accepted: 17 August 1999 / Published online: 6 October 1999  相似文献   

14.
The structure of Ge(105)-(1 x 2) grown on Si(105) is examined by scanning tunneling microscopy (STM) and first-principles calculations. The morphology evolution with an increasing amount of Ge deposited documents the existence of a tensile surface strain in Si(105) and its relaxation with increasing coverage of Ge. A detailed analysis of high-resolution STM images and first-principles calculations produce a new stable model for the Ge(105)-(1 x 2) structure formed on the Si(105) surface that includes the existence of surface strain. It corrects the model developed from early observations of the facets of "hut" clusters grown on Si(001).  相似文献   

15.
Darin Leonhardt  Sang M. Han   《Surface science》2009,603(16):2624-2629
We have measured the time evolution of Ge nucleation density on SiO2 over a temperature range of 673–973 K and deposition rates from 5.1 × 1013 atoms/cm2 s (5 ML/min) to 6.9 × 1014 atoms/cm2 s (65 ML/min) during molecular beam epitaxy. The governing equations from mean-field theory that describe surface energetics and saturation nucleation density are used to determine the size and binding energy of the critical Ge nucleus and the activation energy for Ge surface diffusion on SiO2. The critical nucleus size is found to be a single Ge atom over substrate temperatures from 673 to 773 K, whereas a three-atom nucleus is found to be the critical size over substrate temperatures from 773 to 973 K. We have previously reported 0.44 ± 0.03 eV for the Ge desorption activation energy from SiO2. This value, in conjunction with the saturation nucleation density as a function of substrate temperature, is used to determine that the activation energy for surface diffusion is 0.24 ± 0.05 eV, and the binding energy of the three-atom nucleus is 3.7 ± 0.1 eV. The values of the activation energy for desorption and surface diffusion are in good agreement with previous experiments of metals and semiconductors on insulating substrates. The small desorption and surface diffusion activation barriers predict that selective growth occurring on window-patterned samples is by direct impingement of Ge onto Si and ready desorption of Ge from SiO2. This prediction is confirmed by the small integral condensation coefficient for Ge on SiO2 and two key observations of nucleation behavior on the window-patterned samples. The first observation is the lack of nucleation exclusion zones around the windows, and second is the independence of the random Ge nucleation density on patterned versus unpatterned oxide surfaces. We also present the Ge nucleation density as a function of substrate temperature and deposition rate to demarcate selective growth conditions for Ge on Si with a window-patterned SiO2 mask.  相似文献   

16.
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.  相似文献   

17.
Self-diffusion of implanted (31)Si and (71)Ge in relaxed Si(0.20)Ge(0.80) layers has been studied in the temperature range 730-950 degrees C by means of a modified radiotracer technique. The temperature dependences of the diffusion coefficients were found to be Arrhenius-type with activation enthalpies of 3.6 eV and 3.5 eV and preexponential factors of 7.5 x 10(-3) m(2) s(-1) and 8.1 x 10(-3) m(2) s(-1) for (31)Si and (71)Ge , respectively. These results suggest that, as in Ge, in Si(0.20)Ge(0.80) both (31)Si and (71)Ge diffuse via a vacancy mechanism. Since in Si(0.20)Ge(0.80) (71)Ge diffuses only slightly faster than (31)Si , in self-diffusion studies on Si-Ge (71)Ge radioisotopes may be used as substitutes for the "uncomfortably" short-lived (31)Si radiotracer atoms.  相似文献   

18.
We show that low area density Ge/Si(100) island ensembles comprised solely of hut and pyramid clusters do not undergo Ostwald ripening during days-long growth temperature anneals. In contrast, a very low density of large, low chemical potential Ge islands reduce the supersaturation causing the huts and pyramids to ripen. By assuming that huts lengthen by adding single {105} planes that grow from apex-to-base, we use a mean-field facet nucleation model to interpret these experimental observations. We find that each newly completed plane replenishes the nucleation site at the hut apex and depletes the Ge supersaturation by a fixed amount. This provides a feedback mechanism that reduces the island growth rate. As long as the supersaturation remains high enough to support nucleation of additional planes on the narrowest hut cluster, Ostwald ripening is suppressed on an experimental time scale.  相似文献   

19.
The critical volume for the onset of plastic strain relaxation in SiGe islands on Si(001) is computed for different Ge contents and realistic shapes by using a three-dimensional model, with position-dependent dislocation energy. It turns out that the critical bases for dome- and barnlike islands are different for any composition. By comparison to extensive atomic force microscopy measurements of the footprints left on the Si substrates by islands grown at different temperatures (and compositions), we conclude that, in contrast with planar films, dislocation nucleation in 3D islands is fully thermodynamic.  相似文献   

20.
We find that the shape of two-dimensional (2D) Si or Ge islands has a lower symmetry than the threefold symmetry of the underlying Si(111) substrate if Bi is used as a surfactant during growth. Arrow-shaped or rhomb-shaped 2D islands are observed by scanning tunneling microscopy. This symmetry breaking is explained by a mutual shift between the surface reconstructions present on the substrate and on the islands. Using the kinematic Wulff construction the growth velocities of the steps could be determined from the island shape if the nucleation center has been located by a marker technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号