首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We study low-strain synthetic high pressure, high temperature diamonds by cathodoluminescence and observe novel fine structure in the free exciton and the boron-bound exciton emission. The basic spectral structure is a doublet with DeltaE approximately 11 meV common to both exciton spectra. This resolves the previously found inequivalence of free exciton ( approximately 7 meV) and bound exciton ( approximately 12 meV) fine splitting. It is argued that for a spin-orbit interaction Delta(0) much smaller than the excitonic binding ( E(X) approximately 80 meV) and the excitonic localization ( E(loc) approximately 51 meV) at the boron acceptor, the orbital momentum and the spin of the particles constituting the electron-hole pair are recoupled to form spin singlet and triplet exciton states as the elementary excitations.  相似文献   

2.
A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.  相似文献   

3.
Electric-dipole spin resonance of the deep acceptor Zn(-)(S) in Si reveals close gamma(8) and gamma(7) ground states with zero-field separation of only 0.31 meV as compared to the 43 meV of the two valence bands. With Lande's formula for the g factors of a 2T2 state split by spin-orbit interaction into gamma(8) and gamma(7) this nearness can be interpreted as strong quenching of the orbital moment. The observed dependence on the Zn isotopic mass indicates a dynamic contribution of the acceptor atom to the electronic state as is expected for a Jahn-Teller effect.  相似文献   

4.
We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.  相似文献   

5.
The dynamic spin susceptibility, chi(")(omega), has been measured over the energy range of 2相似文献   

6.
Detailed neutron scattering measurements of YBa2Cu3O6.95 found that the resonance peak and incommensurate magnetic scattering induced by superconductivity represent the same physical phenomenon: two dispersive branches that converge near 41 meV and the in-plane wave vector q(AF)=(pi/a,pi/a) to form the resonance peak. One branch has a circular symmetry around q(AF) and quadratic downward dispersion from approximately 41 meV to the spin gap of 33+/-1 meV. The other, of lower intensity, disperses from approximately 41 meV to at least 55 meV. Our results exclude a quartet of vertical incommensurate rods in q-omega space expected from spin waves produced by dynamical charge stripes as an origin of the observed incommensurate scattering in optimally doped YBCO.  相似文献   

7.
Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn5 (T_(c)=2.3 K). Superconductivity develops from a state with slow (variant Planck's over 2piGamma=0.3+/-0.15 meV) commensurate [Q_(0)=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn5 is the same as CeIn3 but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn5. A sharp spin resonance (variant Planck's over 2piGamma<0.07 meV) at variant Planck's over 2piomega=0.60+/-0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Delta(q+Q0)=-Delta(q).  相似文献   

8.
We have investigated the spin dynamics in the strongly correlated chain copper oxide SrCuO2 for energies up to greater, similar 0.6 eV using inelastic neutron scattering. We observe a gapless continuum of magnetic excitations, which is well described by the "Müller ansatz" for the two-spinon continuum in the S=1/2 antiferromagnetic Heisenberg spin chain. The lower boundary of the continuum extends up to approximately 360 meV, which corresponds to an exchange constant J=226(12) meV.  相似文献   

9.
Inelastic cold-neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic correlations that are dynamic follow the activation to the excited state, identified as the intermediate S = 1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La(1-x)Sr(x)CoO3 , the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.  相似文献   

10.
We consider a superexchange Hamiltonian, H = -SUM ()(2S(i) . S(j)-(1/2)) (2T(i) . T(j)-(1/2)), which describes systems with orbital degeneracy and strong electron-phonon coupling in the limit of large on-site repulsion. In an SU(4) Schwinger boson representation, a reduced spin-orbital interaction is derived exactly, and a mean field theory has been developed. In one dimension, a spin-orbital liquid state with a finite gap is obtained. On a two-dimensional square lattice a novel type of spin-orbital ferromagnetically ordered state appears, while spin and orbital are antiferromagnetic. An important relation has been found, relating the spin and orbital correlation functions to the combined spin-orbital ones.  相似文献   

11.
An inelastic neutron scattering study of overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 83 K) has revealed a resonant spin excitation in the superconducting state. The mode energy is E(res) = 38.0 meV, significantly lower than in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 91 K, E(res) = 42.4 meV). This observation, which indicates a constant ratio E(res)/k(B)T(c) approximately 5.4, helps resolve a long-standing controversy about the origin of the resonant spin excitation in high temperature superconductors.  相似文献   

12.
Evidence for temperature-dependent electron band dispersion in a pentacene thin film polymorph on graphite is provided by angle- and energy-dependent ultraviolet photoelectron spectroscopy. The bands derived from the highest occupied molecular orbital exhibit dispersion of approximately 190 meV at room temperature, and approximately 240 meV at 120 K. Intermolecular electronic coupling in pentacene thin films is thus confirmed to be dependent on temperature and possibly crystal structure, as suggested by additional infrared absorption measurements.  相似文献   

13.
《Physics letters. A》1988,131(9):533-537
The 3d spin dynamics and local susceptibility of isolated Fe ions recoil implanted into the high Tc superconductors YB2Cu3O7−δ and EuBa2Cu3O7−δ have been measured using the perturbed γ-ray distribution method. The observation of a Curie-type susceptibility and Korringa-type relaxation indicates a stable Fe moment in the superconductors with negligible orbital contributions. The observed 3d spin rate corresponds to an extremely small spin line-width of 0.5 meV at 300 K, which is consistent with a very weak coupling of the Fe spin to the host conduction electrons and with a weak pair breaking.  相似文献   

14.
We find using local spin density approximation + Hubbard U band structure calculations that the novel one-dimensional cobaltate Ca3Co2O6 is not a ferromagnetic half-metal but a Mott insulator. Both the octahedral and the trigonal Co ions are formally trivalent, with the octahedral being in the low-spin and the trigonal in the high-spin state. The inclusion of the spin-orbit coupling leads to the occupation of the minority-spin d2 orbital for the unusually coordinated trigonal Co, producing a giant orbital moment (1.57 microB). It also results in an anomalously large magnetocrystalline anisotropy (of order 70 meV), elucidating why the magnetism is highly Ising-like. The role of the oxygen holes, carrying an induced magnetic moment of 0.13 microB per oxygen, for the exchange interactions is discussed.  相似文献   

15.
Using elastic and inelastic neutron scattering we show that a cubic spinel, CdCr2O4, undergoes an elongation along the c axis (c > a = b) at its spin-Peierls-like phase transition at T(N) = 7.8 K. The Néel phase (T < T(N)) has an incommensurate spin structure with a characteristic wave vector Q(M) = (0, delta,1) with delta approximately 0.09 and with spins lying on the ac plane. This is in stark contrast to another well-known Cr-based spinel, ZnCr2O4, that undergoes a c-axis contraction and a commensurate spin order. The magnetic excitation of the incommensurate Néel state has a weak anisotropy gap of 0.6 meV and it consists of at least three bands extending up to 5 meV.  相似文献   

16.
The spin of the final black hole in the coalescence of nonspinning black holes is determined by the "residual" orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole, and the gravitational bursts in a sequence of equal mass encounters. The initial orbital configurations range from those producing an almost direct infall to others leading to numerous orbits before infall, with multiple bursts of radiation. Our sequence consists of orbits with fixed impact parameter. What varies is the initial linear momentum of the black holes. For this sequence, the final black hole of mass M_{h} gets a maximum spin parameter a/M_{h} approximately 0.823, with this maximum occurring for initial orbital angular momentum L/M_{h};{2} approximately 1.176.  相似文献   

17.
The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in YBa2(Cu0.97Ni0.03)3O7 (Tc=80 K) and YBa2(Cu0.99Zn0.01)3O7 (Tc=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er approximately 40 meV in the pure system) shifts to lower energy with a preserved Er/Tc ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.  相似文献   

18.
In photoluminescence spectroscopy of a low-mobility two-dimensional electron gas subjected to a quantizing magnetic field, we observe an anomaly around nu=1 / 3 at a very low temperature (0.1 K) and an intermediate electron density (0.9 x 10(11) cm(-2)). The anomaly is explained as due to perturbation of the incompressible liquid at the Laughlin state due to close proximity of a localized charged exciton which creates a fractionally charged quasihole in the liquid. The anomaly of approximately 2 meV can be destroyed by applying a small thermal energy of approximately 0.2 meV that is enough to close the quasihole energy gap.  相似文献   

19.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

20.
The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are −0.941 μB, −1.663 μB, −3.239 μB, −3.276 μB and −3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are −0.928 meV, 20.941 meV, −8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号