首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We simulate the coalescence process of MHD-scale Kelvin-Helmholtz vortices with the electron inertial effects taken into account. Reconnection of highly stretched magnetic field lines within a rolled-up vortex destroys the vortex itself and the coalescence process, which is well known in ordinary fluid dynamics, is seen to be inhibited. When the magnetic field is initially antiparallel across the shear layer, on the other hand, multiple vortices are seen to coalesce continuously because another type of magnetic reconnection prevents the vortex decay. This type of reconnection at the hyperbolic point also changes the field line connectivity and thus leads to large-scale plasma mixing across the shear layer.  相似文献   

2.
We performed large-eddy simulations (LES) of forced impinging jets over smooth and rough surfaces, containing large-scale, azimuthal vortices generated by the enhanced primary instability in the jet shear layer. The interaction between these vortices and the turbulence in the wall jet that is formed downstream of the impingement region determines their rate of decay. To explore the surface-roughness effects on the evolution of the vortices, sand-grain-like surfaces are generated using uniformly distributed but randomly oriented ellipsoids. The flow is compared to our previous LES of jets impinging on a smooth surface. In spite of the severe modification caused by the roughness on the near-wall flow, the vortex development is not significantly altered. Slightly faster decay of the primary vortices is observed in the rough-wall case compared to the smooth-wall one; the secondary vortex that detaches from the wall and is lifted up has larger vorticity. The highly disturbed near-wall flow is advected outward and affects the evolution of the primary vortex for a longer period during the vortex interaction. The robust turbulent generation mechanism in the outer shear layer, however, mitigates the changes in vortex behaviour. The momentum deficit and the enhancement of turbulence due to the surface roughness play a key role during this process.  相似文献   

3.
We have carried out large-eddy simulations of an impinging jet with embedded azimuthal vortices, a model of the wake of a helicopter hovering in ground effect. The azimuthal vortices are generated by sinusoidal forcing of the velocity at the jet exit. They strengthen while they are advected towards the ground; when they are close to the solid surface, a layer of opposite-sign vorticity is formed at the wall, and lifted up to form a secondary vortex that interacts with the primary one. Regions of reversed flow are caused by the strong, localised, adverse pressure gradient. After this interaction, the primary vortices begin to decay, mostly due to the Reynolds shear stresses, which contribute to the turbulent diffusion of vorticity term in the budget of the phase-averaged azimuthal vorticity. This mechanism is extremely robust, and plays the most important role in the vortex decay even if no turbulence is initially present in the jet, or if the no-slip condition is removed. A three-dimensional instability also plays a role: removing it leads to slower decay. Our results also point out some challenges for turbulence models for the unsteady Reynolds-averaged Navier–Stokes equations.  相似文献   

4.
We give evidence for the first time of the onset of undriven fast, collisionless magnetic reconnection during the evolution of an initially homogeneous magnetic field advected in a sheared velocity field. We consider the interaction of the solar wind with the magnetospheric plasma at low latitude and show that reconnection takes place in the layer between adjacent vortices generated by the Kelvin-Helmholtz instability. This process generates coherent magnetic structures with a size comparable to the ion inertial scale, much smaller than the system dimensions but much larger than the electron inertial scale. These magnetic structures are further advected in the plasma in a complex pattern but remain stable over a time interval much longer than their formation time. These results can be crucial for the interpretation of satellite data showing coherent magnetic structures in the Earth's magnetosheath or the magnetotail.  相似文献   

5.
In this paper we give a formulation of two-dimensional (2D) collisionless magnetohydrodynamic (MHD) turbulence that includes the effects of both electron inertia and electron pressure (or parallel electron compressibility) and is applicable to strongly magnetized collisionless plasmas. We place particular emphasis on the departures from the 2D classical MHD turbulence results produced by the collisionless MHD effects. We investigate the fractal/multi-fractal aspects of spatial intermittency. The fractal model for intermittent collisionless MHD turbulence appears to be able to describe the observed k−1 spectrum in the solar wind. Multi-fractal scaling behaviors in the inertial range are first deduced, and are then extrapolated down to the dissipative microscales. We then consider a parabolic-profile model for the singularity spectrum f (α), as an explicit example of a multi-fractal scenario. These considerations provide considerable insights into the basic mechanisms underlying spatial intermittency in 2D fully developed collisionless MHD turbulence.  相似文献   

6.

Abstract  

The bypass transition of flat-plate boundary layer induced by a circular cylinder wake under the influence of roughness elements is experimentally investigated. The hydrogen-bubble visualization results show that the boundary layer separation occurs upstream of the roughness, and the separated shear layer is incised by roughness to different extent, resulting in different kinds of secondary vortices formed immediately downstream of the roughness. During the evolution of the secondary vortex, two types of instabilities are observed, which are denoted as large- and small-scale instabilities, respectively, according to different spatial scale of the hairpin vortices formed afterward. A merging process of hairpin vortices is also observed when the secondary vortices undergo the small-scale instability, and a potential new transition control strategy based on the present observation is proposed.  相似文献   

7.
Previous experimental and numerical studies have revealed that the hairpin vortex is a basic flow element of transitional boundary layer. The hairpin vortex is believed to have legs, necks and a ring head. Based on our DNS study, the legs and the ring head are generated separately by different mechanisms. The legs function like an engine to generate low speed zones by rotation, create shear layers with surrounding high speed neighbor fluids, and further cause vortex ring formation through shear layer instability. In addition, the ring head is ?-shaped and separated from quasi-streamwise legs from the beginning. Contrary to the classical concept of "vortex breakdown", we believe transition from laminar flow to turbulence is a "buildup" process of multiple level vortical structures. The vortex rings of first level hairpins are mostly responsible for positive spikes, which cause new vorticity rollup, second level vortex leg formation and finally smaller second level vortex ring generation. The third and lower level vortices are generated following the same mechanism. In this paper, the physical process from ?-vortex to multi-level hairpin vortices is described in detail.  相似文献   

8.
无碰撞等离子体电流片中的低频波   总被引:5,自引:0,他引:5       下载免费PDF全文
采用两种无碰撞二维三分量不可压缩磁流体力学(MHD)模型,计入电子扰动压力张量效应,研究了电流片等离子体的色散性质和波.由于得到的一般色散关系较为复杂,只解析讨论了电流片的中心区和电子β*e=0两种特殊情况.主要结果如下:(1)在短波区(kdi>1),存在快磁声 动理学Alfven波和斜Alfven 哨声模,电子磁流体力学模型是足够精确的MHD模型;在长波区(kdi<1=,存在Alfven波和离子声波,理想的MHD模型是适用的.(2)电子β*e=0情况下的结果,显然遗漏了一些波模(如离子声波和快磁声动理 关键词: 电流片 磁流体力学 电子压力张量 色散关系  相似文献   

9.
We present the point of view that both the vortices and the east-west zonal winds of Jupiter are confined to the planet's shallow weather layer and that their dynamics is completely described by the weakly dissipated, weakly forced quasigeostrophic (QG) equation. The weather layer is the region just below the tropopause and contains the visible clouds. The forcing mimics the overshoot of fluid from an underlying convection zone. The late-time solutions of the weakly forced and dissipated QG equations appear to be a small subset of the unforced and undissipated equations and are robust attractors. We illustrate QG vortex dynamics and attempt to explain the important features of Jupiter's Great Red Spot and other vortices: their shapes, locations with respect to the extrema of the east-west winds, stagnation points, numbers as a function of latitude, mergers, break-ups, cloud morphologies, internal distributions of vorticity, and signs of rotation with respect to both the planet's rotation and the shear of their surrounding east-west winds. Initial-value calculations in which the weather layer starts at rest produce oscillatory east-west winds. Like the Jovian winds, the winds are east-west asymmetric and have Karman vortex streets located only at the west-going jets. From numerical calculations we present an empirically derived energy criterion that determines whether QG vortices survive in oscillatory zonal flows with nonzero potential vorticity gradients. We show that a recent proof that claims that all QG vortices decay when embedded in oscillatory zonal flows is too restrictive in its assumptions. We show that the asymmetries in the cloud morphologies and numbers of cyclones and anticyclones can be accounted for by a QG model of the Jovian atmosphere, and we compare the QG model with competing models.  相似文献   

10.
We have used large-eddy simulation with an immersed boundary method to study turbulent flows over distributions of uniform height, staggered cubes. The computational domains were designed such that both the roughness sublayer and a region of the inertial layer are resolved. With this, we record vertical profiles of time series of fluctuating streamwise and vertical velocity at different locations throughout the domain. Contour images of these fluctuating quantities shown relative to elevation and time are studied; contour images of Reynolds shear stresses owing to ‘sweeps’ and ‘ejections’ are also studied. These images show that periods of momentum excess (deficit) in the inertial-layer precede excitation (subdual) of cube-scale coherent vortices in the roughness sublayer. We compute this time lag (termed advective lag) and demonstrate that it scales linearly with wall-normal elevation. The advective lag is attributed to coherent, low- and high-momentum regions in the aloft inertial layer. Vortex identification is used to illustrate the presence of hairpin packets encapsulating low-momentum regions. Based on this, the reported inclination angle associated with hairpin packets is used to guide the development of a model for prediction of advective lag with height. The model captures the advective lag profiles reasonably well. In the interest of generality, additional cases of flow over homogeneous roughness (aerodynamic drag imposed with the equilibrium logarithmic law) are considered. We again observe that advective lag scales linearly with wall-normal elevation. Advective lag predictions from the aforementioned model agree well with results for these cases.  相似文献   

11.
张扬  丁宁 《物理学报》2006,55(5):2333-2339
利用理想磁流体力学(MHD)模型对有轴向流参与的Z箍缩等离子体不稳定性进行了分析.对可压缩平板等离子体模型的色散关系进行了推导,讨论了三种不同等离子体状态下的不稳定性增长率.结果显示,等离子体的可压缩性对磁瑞利-泰勒/开尔文-亥姆霍兹(MRT/KH)杂化不稳定性有抑制作用,改善了轴向剪切流对长波长扰动的影响.分析了不同轴向流速度分布对系统稳定性的影响.结果表明,对于峰值相同的不同轴向流,其对不稳定性的抑制效果只依赖于扰动集中区域内速度剪切的大小,与其他位置的速度剪切无关. 关键词: Z箍缩 磁瑞利-泰勒不稳定性 轴向剪切流 MHD方程  相似文献   

12.
张冬冬  谭建国  李浩  侯聚微 《物理学报》2017,66(10):104702-104702
在超声速吸气式混合层风洞中,采用基于纳米粒子的平面激光散射(NPLS)技术对平板混合层和三角波瓣混合器诱导的混合层流场精细结构进行了对比实验研究.上下两层来流的实测马赫数分别为1.98和2.84,对流马赫数为0.2.NPLS图像清晰地展示了Kelvin-Helmholtz涡、流向涡、波系结构以及大尺度涡结构的配对合并过程.通过对比分析时间相关的NPLS流场图像,发现了大尺度拟序结构随时间发展演化的非定常特性.基于流动显示结果,采用分形维数和间歇因子指标对流场结构和混合特性进行了定量分析.实验研究表明,三角波瓣混合器诱导的流向涡结构显著提高了上下两层来流的掺混效率,其流动远场的分形维数突破了平板混合层中完全湍流区的分形维数值,达到了1.88,流场结构表现出明显的破碎性,有利于流动在标量层面的扩散和掺混.流动间歇性分析表明,流向涡与展向涡的相互剪切作用主导着混合层的掺混特性,同时由于流向涡的卷吸作用,三角波瓣混合器诱导的混合层混合区域更大,更多的流质被卷入混合区完成混合.  相似文献   

13.
Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.  相似文献   

14.
A physical model of the development of turbulence in free shear flows is proposed. The model is based on the results of numerical simulations of turbulent flow development. The main ideas of the proposed theory of turbulence are stated as follows: the onset of turbulence begins with the formation of large vortices; spectral energy transfer involves both direct and inverse cascades; and the inertial range of the energy spectrum develops as a result of concurrent direct and inverse cascades. The dominant physical factors that determine the spectrum include Joukowski forces.  相似文献   

15.
林黎明 《物理学报》2020,(3):188-198
钝体是目前各种工程中广泛应用的一种结构.钝体绕流的尾迹涡动力学也是经典的流体力学研究对象之一.本文通过直接数值模拟,针对低雷诺数下各种钝体结构的不可压缩绕流,当形成三维尾迹时,研究具有特定符号的涡量分布特征.通过分析两类钝体结构,基本的直柱体和受到几何扰动的柱体,总结并得到了更为广泛适用的涡量符号律.通过对比并分析这两类钝体结构,结合理论证明的结果,进一步厘清了对产生涡量符号律的这两类钝体结构之间的内在物理关联,即引起自然失稳的小扰动在惯性力作用下产生的表面涡量只能向下游演化发展,而几何扰动则根据扰动位置,产生的表面涡量可以向扰动上游或下游演化发展.从而可以推测所有钝体结构尾迹中的各种型式的涡脱落模态,从涡量符号律的演化角度来看,实际上是一致的,都是起源于壁面产生特定符号组合规律的∏型涡.  相似文献   

16.
Experiments on the excitation of counterpropagating zonal flows by the magnetohydrodynamic (MHD) method in a rotating cylindrical vessel with a conic bottom have been performed. Flows appear in a conducting fluid layer in the field of ring magnets under the action of a radial electric field. The velocity fields have been reconstructed by the particle image velocimetry (PIV) method. In the fast rotation regimes with a thin fluid layer, where the Rossby-Obukhov scale does not exceed the characteristic sizes of the vessel, the system of perturbations appears with almost immobile blocked anticyclones in the outer part of the flow and rapidly moving cyclones in the main stream. The diagram of regimes is plotted in the variables of the relative angular velocities of the averaged zonal flow and transfer of vortices about the system rotation axis. Attention is focused on the results for the regions of the diagram with slow motion of vortices with respect to the rotating coordinate system near the parameters for stationary Rossby waves (blocking of circulation). The results are compared to the results previously obtained in similar experiments using the source-sink method.  相似文献   

17.
18.
杨维纮  胡希伟 《物理学报》1996,45(4):595-600
对非均匀载流柱形等离子体数值求解了计及有限离子频率效应和有限压强效应的磁流体力学方程组.证实了在有天线激励情况下,理想等离子体的阿耳文波共振层并不奇异,且阿耳文波可以越过共振层并得到等离子体的强烈响应.还研究了天线和等离子体的耦合情况,给出了m=1时的本征波谱曲线及典型波在等离子体中的传播,结果表明对各种频段的外界输入的磁流体波,都存在着到达共振层前被阻尼而在通过共振层后被放大的共同特征. 关键词:  相似文献   

19.
Shock waves are ubiquitous in space and astrophysics. They transform directed flow energy into thermal energy and accelerate energetic particles. The energy repartition is a multiscale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. While large scale features of ion heating are known, the electron heating and smaller scale fields remain poorly understood. We determine for the first time the scale of the electron temperature gradient via electron distributions measured in situ by the Cluster spacecraft. Half of the electron heating coincides with a narrow layer several electron inertial lengths (c/ω(pe)) thick. Consequently, the nonlinear steepening is limited by wave dispersion. The dc electric field must also vary over these small scales, strongly influencing the efficiency of shocks as cosmic ray accelerators.  相似文献   

20.
Shear stress distributions were obtained from velocity measurements in a concave surface boundary layer flow in the presence of Görtler vortices by means of a single hot-wire probe for several streamwise (x) locations. A set of vertical wires of 0.20 mm diameter were positioned at a distance of 10 mm upstream from the leading edge of a concave surface of radius of curvature R=1.0 m to pre-set the wavelength of the vortices so to obtain the most amplified wavelength Görtler vortices. Consequently, the wavelength of the vortices was set equal to the wire spacing and preserved downstream. In addition to the high shear regions near the wall, one positive peak at the head of the mushroom-like structures and two relatively weak negative peaks at the vicinity of the low-speed streaks are found in the iso-?u/?y contours. They are believed to be related to the formation of the inflectional point in the velocity profile across boundary layer. The occurrence of the inflection points in the spanwise distributions of streamwise velocity component u is associated with the appearance of the second peak of the ?u/?z shear near the boundary layer edge. The nonlinear effect of Görtler instability is to increase the wall shear stress, and further enhancement beyond the turbulent values is due to the presence of secondary instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号