首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
2.
Over the past twenty years experiments performed on thin polymer films deposited on substrates have shown that the glass transition temperature T(g) can either decrease or increase depending on the strength of the interactions. Over the same period, experiments have also demonstrated that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous, on the scale of a few nanometers. A model for the dynamics of non-polar polymers, based on percolation of slow subunits, has been proposed and developed over the past ten years. It proposes a unified mechanism regarding these two features. By extending this model, we have developed a 3D model, solved by numerical simulations, in order to describe and calculate the mechanical properties of polymers close to the glass transition in the linear regime of deformation, with a spatial resolution corresponding to the subunit size. We focus on the case of polymers confined between two substrates with non-negligible interactions between the polymer and the substrates, a situation which may be compared to filled elastomers. We calculate the evolution of the elastic modulus as a function of temperature, for different film thicknesses and polymer-substrate interactions. In particular, this allows to calculate the corresponding increase of glass transition temperature, up to 20 K in the considered situations. Moreover, between the bulk T(g) and T(g) + 50 K the modulus of the confined layers is found to decrease very slowly in some cases, with moduli more than ten times larger than that of the pure matrix at temperatures up to T(g) + 50 K. This is consistent with what is observed in reinforced elastomers. This slow decrease of the modulus is accompanied by huge fluctuations of the stress at the scale of a few tens of nanometers that may even be negative as compared to the solicitation, in a way that may be analogous to mechanical heterogeneities observed recently in molecular dynamics simulations. As a consequence, confinement may result not only in an increase of the glass transition temperature, but in a huge broadening of the glass transition.  相似文献   

3.
We report measurements of the glass transition temperature, T(g), in free standing polymer films in a low M(n) limit where chain confinement effects are not observed. The measured T(g) values are accurately described by a layer model incorporating a mobile surface layer with a size determined by the length scale of cooperative dynamics. The analysis leads to a surface T(g) value and length scale of cooperative motion near bulk T(g) which quantitatively agree with independently determined values. The model and parameters provide a framework within which all previous measurements of T(g) values in thin supported films may be understood and provides values for the length scale of cooperative motion over an extended range of temperatures below the bulk T(g) value.  相似文献   

4.
The approaching glass transition in polystyrene/toluene solutions leads to a sharp decay of both the collective diffusion coefficient D and the thermal diffusion coefficient D(T) at concentrations above 0.2 g/cm(3). The Soret coefficient S(T) = D(T)/D follows power-law scaling from semidilute to concentrated and is not influenced by the slowing down of the dynamics associated with the glass transition. Both D and D(T) are governed by the same friction coefficient. The scaling behavior of S(T) with concentration on approach of the glass transition is compared to the divergence of S(T) near a consolute critical point.  相似文献   

5.
The local and cooperative dynamics of supported ultrathin films ( L = 6.4 - 120 nm) of isotactic poly(methyl methacrylate) (i-PMMA, Mn = 118 x 10(3) g/mol) was studied using dielectric relaxation spectroscopy for a wide range of frequencies (0.1 Hz to 10(6) Hz) and temperatures (250 - 423 K). To assess the influence of the PMMA film surfaces on the glass transition dynamics, two different sample geometries were employed: a single layer PMMA film with the film surfaces in direct contact with aluminum films which act as attractive, hard boundaries; and a stacked polystyrene-PMMA-polystyrene trilayer film which contains diffuse PMMA-PS interfaces. For single layer films of i-PMMA, a decrease of the glass transition temperature T(g) by up to 10 K was observed for a film thickness L < 25 nm (comparable to R(EE)), indicated by a decrease of the peak temperature T(alpha) in the loss epsilon(")(T) at low and high frequencies and by a decrease in the temperature corresponding to the maximum in the apparent activation energy E(a)(T) of the alpha-process. In contrast, measurements of i-PMMA sandwiched between PS-layers revealed a slight (up to 5 K) increase in T(g) for PMMA film thickness values less than 30 nm. The slowing down of the glass transition dynamics for the thinnest PMMA films is consistent with an increased contribution from the less mobile PMMA-PS interdiffusion regions.  相似文献   

6.
Many of water's peculiar physical properties are still not well understood, and one of the most important unresolved questions is its glass transition related dynamics. The consensus has been to accept a glass transition temperature (T(g)) around 136 K, but this value has been questioned and reassigned to about 165 K. We find evidence that the dielectric relaxation process of confined water that has been associated with the long accepted T(g) of water (130-140 K) must be a local process which is not related to the actual glass transition. Rather, our data indicate a glass transition at 160-165 K for bulk water and about 175 K for confined water (depending on the confining system).  相似文献   

7.
We study dynamically highly asymmetric binary mixtures comprised of small methyl tetrahydrofuran (MTHF) molecules and polystyrene. Combined use of dielectric spectroscopy, ^{2}H nuclear magnetic resonance, incoherent quasielastic neutron scattering, and depolarized dynamic light scattering allows us to selectively probe the dynamics of the components in a broad dynamic range. It turns out that the mixtures exhibit two glass transitions in a wide concentration range although being fully miscible on a macroscopic scale. In between both glass transition temperatures, the dynamics of the small molecules show strong confinement effects, e.g., a crossover from Vogel-Fulcher to Arrhenius behavior of the time constants. Moreover, the dynamical behavior of small molecules close to the slow matrix is consistent with mode coupling theory predictions for a type-A glass transition, which was expected from recent theoretical and simulation studies in comparable systems.  相似文献   

8.
We have measured, the thickness dependence of the glass transition temperature T(g)( h), using ellipsometry at variable temperature, for poly(methyl-methacrylate) (PMMA) of various tacticity in confined geometry. We report that several factors significantly affect T(g)( h): i) polymer microstructure (stereoregularity of PMMA) related to local dynamics; ii) interfacial interactions; iii) conformation of the polymer chains. These results raise many fundamental questions on the origin of the thickness-dependent glass transition. Why and how do the interactions with the substrate significantly affect T(g)( h)? Does T(g)( h) depend on the modifications of conformational parameters of the chains (their entropy)? What is the correlation between local dynamics and T(g)( h) in thin films? The aim of this paper is to summarise these open questions, which should stimulate further investigations in the thin polymer film scientific community.  相似文献   

9.
The glassy dynamics of poly(propylene glycol) (PPG) and poly(dimethyl siloxane) (PDMS) confined to a nanoporous host system revealed by dielectric spectroscopy, temperature-modulated DSC and neutron scattering is compared. For both systems the relaxation rates estimated from dielectric spectroscopy and temperature-modulated DSC agree quantitatively indicating that both experiments sense the glass transition. For PPG the segmental dynamics is determined by a counterbalance of adsorption and confinement effect. The former results form an interaction of the confined macromolecules with the internal surfaces. A confinement effect originates from an inherent length scale on which the underlying molecular motions take place. The increment of the specific-heat capacity at the glass transition vanishes at a finite length scale of 1.8 nm. Both results support the conception that a characteristic length scale is relevant for glassy dynamics. For PDMS only a confinement effect is observed which is much stronger than that for PPG. Down to a pore size of 7.5 nm, the temperature dependence of the relaxation times follows the Vogel-Fulcher-Tammann dependence. At a pore size of 5 nm this changes to an Arrhenius-like behaviour with a low activation energy. At the same pore size vanishes for PDMS. Quasielastic neutron scattering experiments reveal that also the diffusive character of the relevant molecular motions --found to be characteristic above the glass transition-- seems to disappear at this length scale. These results gives further strong support that the glass transition has to be characterised by an inherent length scale of the relevant molecular motions.Received: 1 January 2003, Published online: 14 October 2003PACS: 64.70.Pf Glass transitions - 77.22.Gm Dielectric loss and relaxation - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling  相似文献   

10.
采用分子动力学方法对液态金属Al在不同的初始状态下,以相同急冷速率凝固的过程进行模拟跟踪研究,发现:在玻璃转变温度Tg以上(即过冷液态)时,系统的微结构组态情况基本一致,相差甚微;但在Tg以下时,不同的初始液态微结构对其固态微结构有明显的影响;且在Tg处各种固态微结构之间的差别发生突发性的变化。这一结果对于深入理解液-固微结构之间的转变关系,具有一定的重要意义。  相似文献   

11.
Atomic force microscopy was used to study the embedding of gold nanoparticles into the surface of polystyrene films. The rate of embedding was determined at temperatures near the bulk glass transition temperature T(g) by measuring the apparent nanosphere height as a function of annealing time. In particular, relative height measurements of the adhered particles were made at temperatures below the bulk T(g) value. In the absence of enhanced surface dynamics or yield processes no embedding is expected to occur for T相似文献   

12.
The effect of nanoconfinement on the glass transition temperature T(g) in thin polymer films is studied as a function of added small-molecule diluent or plasticizer. The decrease [increase] in T(g) found in nanoconfined, neat polystyrene [poly(2-vinyl pyridine)] is suppressed by added diluent, with 13-20 nm thick polystyrene films exhibiting bulk T(g) upon addition of 9 wt % pyrene or 4 wt % dioctylphthalate [corrected]. This is explained by a connection between the size scale of the cooperative dynamics associated with T(g), which decreases with added diluent, and the size scale of the nanoconfinement effect.  相似文献   

13.
Ultrafast two-dimensional infrared (2D-IR) spectroscopy is used to study the picosecond dynamics of a vibrational probe molecule dissolved in a fragile glass former. The spectral dynamics are observed as the system is cooled to within a few degrees of the glass transition temperature (T(g)). We observe nonexponential relaxation of the frequency-frequency correlation function, similar to what has been reported for other dynamical correlation functions. In addition, we see evidence for α-like relaxation, typically associated with long-time, cooperative molecular motion, on the ultrafast time scale. The data suggests that the spectral dynamics are sensitive to cooperative motion occurring on time scales that are necessarily longer than the observation time.  相似文献   

14.
A recently developed experimental platform in polymer nanofluidics [, ] is used to investigate the glassy dynamics of phase-separated block-copolymers during capillary flow into cylindrical nanopores. The flow process is monitored by means of broadband dielectric spectroscopy. Due to the break in the symmetry induced by the geometrical confinement, a structural transition in the polymer morphology is observed, no shifts in the position of the dynamic glass transition are detected.  相似文献   

15.
A particle in a random potential with logarithmic correlations in dimensions d = 1,2 is shown to undergo a dynamical transition at T(dyn)>0. In d = 1 exact results show T(dyn) = T(c), the static glass transition temperature, and that the dynamical exponent changes from z(T) = 2+2(T(c)/T)(2) at high T to z(T) = 4T(c)/T in the glass phase. The same formulas are argued to hold in d = 2. Dynamical freezing is also predicted in the 2D random gauge XY model and related systems. In d = 1 a mapping between dynamics and statics is unveiled and freezing involves barriers as well as valleys. Anomalous scaling occurs in the creep dynamics, relevant to dislocation motion experiments.  相似文献   

16.
The effect of a nanometer confinement on the molecular dynamics of poly(methyl phenyl siloxane) (PMPS) was studied by dielectric spectroscopy (DS), temperature modulated DSC (TMDSC) and neutron scattering (NS). Nanoporous glasses with pore sizes of 2.5–20 nm have been used. DS and TMDSC experiments show that for PMPS in 7.5 nm pores the molecular dynamics is faster than in the bulk which originates from an inherent length scale of the underlying molecular motions. For high temperatures the temperature dependence of the relaxation rates for confined PMPS crosses that of the bulk state. Besides finite states effects also the thermodynamic state of nano-confined PMPS is different from that of the bulk. At a pore size of 5 nm the temperature dependence of the relaxation times changes from a Vogel/Fulcher/Tammann like to an Arrhenius behavior where the activation energy depends on pore size. This is in agreement with the results obtained by NS. The increment of the specific heat capacity at the glass transition depends strongly on pore size and vanishes at a finite length scale between 3 and 5 nm which can be regarded as minimal length scale for glass transition to appear in PMPS.  相似文献   

17.
Optics and Spectroscopy - A study of IR spectra of H2O and D2O in nanoporous glass (PG) matrices with pores of different sizes has been carried out under geometric confinement. It has been...  相似文献   

18.
Properties such as the glass transition temperature ( T(g)) and the diffusion coefficient of ultrathin polymeric films are shown to depend on the dimensions of the system. In this work, a hard-sphere molecular dynamics methodology has been applied to simulate such systems. We investigate the influence that substrates have on the behavior of thin polymer films; we report evidence suggesting that, depending on the strength of substrate-polymer interactions, the glass transition temperature for a thin film can be significantly lower or higher than that of the bulk.  相似文献   

19.
The glass transition temperature is known to increase with decreasing film thickness h for sufficiently thin poly(methyl methacrylate) films supported by silicon oxide substrates. We show that this system undergoes a CO2 pressure-induced devitrification transition, P(g), which is film thickness dependent, P(g)(h)=DeltaP(g)+P(bulk)(g). P(bulk)(g) is the bulk glass transition and DeltaP(g) can be positive or negative depending on T and P. The phenomenon of retrograde vitrification, wherein the polymer exhibits a rubbery-to-glassy-to-rubbery transition upon changing temperature isobarically, is also shown to occur in this system and it is film thickness dependent.  相似文献   

20.
Differential scanning calorimetry (DSC), broadband dielectric relaxation spectroscopy (DRS), and thermally stimulated depolarization current (TSDC) techniques were employed to investigate glass transition and polymer dynamics in nanocomposites of polyurethane (PU) and organically modified montmorillonite (MMT) (weight fraction 0%–15%) prepared by solution casting. The PU matrix was obtained from oligo(oxytetramethylene glycol) of molar mass 1000 g/mol, 4,4′-diphenylmethane diisocyanate and 1,1-dimethylhydrazine as chain extender. Wide-angle X-ray scattering confirmed the formation of partly exfoliated structures at low MMT content. DSC, DRS, and TSDC show, in agreement with each other, that a fraction of polymer makes no contribution to the glass transition and to the corresponding α relaxation, whereas the rest exhibits similar glass transition dynamics as the pure matrix. This fraction of immobilized polymer reaches a maximum at about 5 wt% MMT. Effects of MMT on the microphase-separated structure of PU are negligible, as indicated by the study of glass transition and interfacial dielectric polarization/relaxation. No effects of MMT on the local, secondary γ and β relaxations were observed. Mechanical properties show a maximum improvement at about 5 wt% MMT, in good correlation with morphology and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号