首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of 87Rb. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular, we measure conversion rates in the range of 10(-12) cm(3) s(-1) for spin-changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10(-13) cm(3) s(-1) for hyperfine-changing collisions. We observe polar behavior in the F=2 ground state of 87Rb, while we find the F=1 ground state to be ferromagnetic. We further see a magnetization for condensates prepared with nonzero total spin.  相似文献   

2.
We present the creation and time evolution of two-dimensional Skyrmion excitations in an antiferromagnetic spinor Bose-Einstein condensate. Using a spin rotation method, the Skyrmion spin textures were imprinted on a sodium condensate in a polar phase, where the two-dimensional Skyrmion is topologically protected. The Skyrmion was observed to be stable on a short time scale of a few tens of ms but to dynamically deform its shape and eventually decay to a uniform spin texture. The deformed spin textures reveal that the decay dynamics involves breaking the polar phase inside the condensate without having topological charge density flow through the boundary of the finite-sized sample. We discuss the possible formation of half-quantum vortices in the deformation process.  相似文献   

3.
We have observed sub-Poissonian spin correlations generated by collisionally induced spin mixing in a spin-1 Bose-Einstein condensate. We measure a quantum noise reduction of -7 dB (-10 dB corrected for detection noise) below the standard quantum limit for the corresponding coherent spin states. The spin fluctuations are detected as atom number differences in the spin states using fluorescent imaging that achieves a detection noise floor of 8 atoms per spin component for a probe time of 100 μs.  相似文献   

4.
We investigate the quantum dynamics of number fluctuations inside an atomic condensate during coherent spin mixing among internal states of the ground state hyperfine manifold, by quantizing the semiclassical nonrigid pendulum model in terms of the conjugate variable pair: the relative phase and the atom number. Our result provides a theoretical basis that resolves the resolution limit, or the effective "shot-noise" level, for counting atoms that is needed to clearly detect quantum correlation effects in spin mixing.  相似文献   

5.
6.
We have calculated the F=1 ground state of a spinor Bose-Einstein condensate trapped harmonic potential with an applied Ioffe-Pitchard magnetic field. The vortex phase diagram is found in the plane spanned by perpendicular and longitudinal magnetic fields. The ferromagnetic condensate has two vortex phases which differ by winding number in the spinor components. The two vortices for the F(z)=-1 antiferromagnetic condensate are separated in space. Moreover, we considered an average local spin || to testify to what extent it is parallel to magnetic field (the nonadiabatic effects). We have shown that the effects are important at vortex cores.  相似文献   

7.
We present examples of ring structures that arise in a 87Rb spinor condensate through the application of Raman laser pulses that couple the internal spin states of the F = 2 ground state manifold. The appearance of fringes within the context of the population transfer dynamics is discussed, and several pulse protocol options are compared.  相似文献   

8.
We propose an experimental scheme to create spin-orbit coupling in spin-3 Cr atoms using Raman processes. By employing the linear Zeeman effect and optical Stark shift, two spin states within the ground electronic manifold are selected, which results in a pseudospin-1/2 model. We further study the ground state structures of a spin-orbit-coupled Cr condensate. We show that, in addition to the stripe structures induced by the spin-orbit coupling, the magnetic dipole-dipole interaction gives rise to the vortex phase, in which a spontaneous spin vortex is formed.  相似文献   

9.
We numerically simulate the dynamics of a spin-2 Bose-Einstein condensate. We find that the initial phase plays an important role in the spin component oscillations. The spin mixing processes can fully cancel out due to quantum interference when taking some initial special phase. In all the spin mixing processes, the total spin is conversed. When the initial population is mainly occupied by a component with the maximal or minimal magnetic quantum number, the oscillations of spin components cannot happen due to the total spin conversation. The presence of quadratic Zeeman energy terms suppresses some spin mixing processes so that the oscillations of spin components are suppressed in some initial spin configuration. However, the linear Zeeman energy terms have no effects on the spin mixing processes.  相似文献   

10.
Coreless vortices were phase imprinted in a spinor Bose-Einstein condensate. The three-component order parameter of F=1 sodium condensates held in a Ioffe-Pritchard magnetic trap was manipulated by adiabatically reducing the magnetic bias field along the trap axis to zero. This distributed the condensate population across its three spin states and created a spin texture. Each spin state acquired a different phase winding which caused the spin components to separate radially.  相似文献   

11.
We theoretically consider a spin polarized, optically trapped condensate of 87Rb atoms in F=1. We observe a transfer of atoms to other Zeeman states due to the dipolar interaction which couples the spin and the orbital degrees of freedom. Therefore the transferred atoms acquire an orbital angular momentum. This is a realization of the Einstein-de Haas effect in systems of cold gases. We find resonances which make this phenomenon observable even in very weak dipolar systems, when the Zeeman energy difference on transfer is fully converted to rotational kinetic energy.  相似文献   

12.
Helical spin textures in a 87Rb F=1 spinor Bose-Einstein condensate are found to decay spontaneously toward a spatially modulated structure of spin domains. The formation of this modulated phase is ascribed to magnetic dipolar interactions that energetically favor the short-wavelength domains over the long-wavelength spin helix. The reduction of dipolar interactions by a sequence of rf pulses results in a suppression of the modulated phase, thereby confirming the role of dipolar interactions in this process. This study demonstrates the significance of magnetic dipole interactions in degenerate 87Rb F=1 spinor gases.  相似文献   

13.
We present the experimental observation of a magnetically tuned resonance phenomenon in the spin mixing dynamics of ultracold atomic gases. In particular, we study the magnetic field dependence of spin conversion in F=2 (87)Rb spinor condensates in the crossover from interaction dominated to quadratic Zeeman dominated dynamics. We discuss the observations in the framework of spin dynamics as well as matter wave four wave mixing. Furthermore, we show that the validity range of the single mode approximation for spin dynamics is significantly extended at high magnetic field.  相似文献   

14.
A simple theoretical model that describes the pulsed Davies electron-nuclear double resonance (ENDOR) experiment for an electron spin S = (1/2) coupled to a nuclear spin I = (1/2) was developed to account for unusual W-band (95 GHz) ENDOR effects observed at low temperatures. This model takes into account the thermal polarization along with all internal relaxation processes in a four-level system represented by the electron- and nuclear-spin relaxation times T(1e) and T(1n), respectively, and the cross-relaxation time, T(1x). It is shown that under conditions of sufficiently high thermal spin polarization, nuclei can exhibit asymmetric ENDOR spectra in two cases: the first when t(mix) > T(1e) and T(1n), T(1x) > T(1e), where ENDOR signals from the alpha manifold are negative and those of the beta manifold positive, and the second when the cross- and/or nuclear-relaxation times are longer than the repetition time (t(mix) < T(1e) < t(R) and T(1n), T(1x) > t(R)). In that case the polarization of the ENDOR signals becomes opposite to the previous case, the lines in the alpha manifolds are positive, and those of the beta manifold are negative. This case is more likely to be encountered experimentally because it does not require a very long mixing time and is a consequence of the saturation of the nuclear transitions. Using this model the experimental t(mix) and t(R) dependencies of the W-band (1)H ENDOR amplitudes of [Cu(imidazole)(4)]Cl(2) were reproduced and the values of T(1e) and T(1x) > T(1e) were determined. The presence of asymmetry in the ENDOR spectrum is useful as it directly provides the sign of the hyperfine coupling. The presented model allows the experimentalist to adjust experimental parameters, such as t(mix) and t(R), in order to optimize the desired appearance of the spectrum.  相似文献   

15.
We calculate the spectrum of collective excitations of the XY spiral state prepared adiabatically or suddenly from a uniform ferromagnetic F=1 condensate. For spiral wave vectors past a critical value, spin wave excitation energies become imaginary indicating a dynamical instability. We construct phase diagrams as functions of spiral wave vector and quadratic Zeeman energy.  相似文献   

16.
Coherent dynamics of domain formation in the Bose ferromagnet   总被引:1,自引:0,他引:1  
We present a theory to describe domain formation observed very recently in a quenched 87Rb gas, a typical ferromagnetic spinor Bose system. An overlap factor is introduced to characterize the symmetry breaking of MF=+/-1 components for the F=1 ferromagnetic condensate. We demonstrate that the domain formation is a coeffect of the quantum coherence and the thermal relaxation. A thermally enhanced quantum oscillation is observed during the dynamical process of the domain formation. And the spatial separation of domains leads to significant decay of the MF=0 component fraction in an initial MF=0 condensate.  相似文献   

17.
We discuss the energy eigenstates, ground and spin mixing dynamics of a spin-1 spinor Bose–Einstein condensate for a dilute atomic vapor confined in an optical trap. Our results go beyond the mean field picture and are developed within a fully quantized framework.  相似文献   

18.
We have experimentally observed the dynamics of an antiferromagnetic sodium Bose-Einstein condensate quenched through a quantum phase transition. Using an off-resonant microwave field coupling the F = 1 and F = 2 atomic hyperfine levels, we rapidly switched the quadratic energy shift q from positive to negative values. At q = 0, the system undergoes a transition from a polar to antiferromagnetic phase. We measured the dynamical evolution of the population in the F = 1, mF = 0 state in the vicinity of this transition point and observed a mixed state of all 3 hyperfine components for q < 0. We also observed the coarsening dynamics of the instability for q < 0, as it nucleated small domains that grew to the axial size of the cloud.  相似文献   

19.
Squeezed spin states possess unique quantum correlation or entanglement and are significantly promising for advancing quantum information processing and quantum metrology. In recent back-to-back publications [C. Gross et al., Nature (London) 464, 1165 (2010) and Max F. Riedel et al., Nature (London) 464, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2 and -2.5 dB, respectively, in two-component atomic condensates exhibiting one-axis-twisting interactions. The noise reduction limit for the one-axis twisting scales as ∝1/N(2/3), which for a condensate with N~10(3) atoms is about 100 times below the standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the one-axis-twisting spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction ∝1/N or an extra tenfold improvement for N~10(3).  相似文献   

20.
An improved 2D (13)C-(13)C CP(3) MAS NMR correlation experiment with mixing by true (1)H spin diffusion is presented. With CP(3), correlations can be detected over a much longer range than with direct (1)H-(13)C or (13)C-(13)C dipolar recoupling. The experiment employs a (1)H spin diffusion mixing period tau(m) sandwiched between two cross-polarization periods. An optimized CP(3) sequence for measuring polarization transfer on a length scale between 0.3 and 1.0 nm using short mixing times of 0.1 ms < tau(m) < 1 ms is presented. For such a short tau(m), cross talk from residual transverse magnetization of the donating nuclear species after a CP can be suppressed by extended phase cycling. The utility of the experiment for genuine structure determination is demonstrated using a self-aggregated Chl a/H(2)O sample. The number of intramolecular cross-peaks increases for longer mixing times and this obscures the intermolecular transfer events. Hence, the experiment will be useful for short mixing times only. For a short tau(m) = 0.1 ms, intermolecular correlations are detected between the ends of phytyl tails and ring carbons of neighboring Chl a molecules in the aggregate. In this way the model for the structure, with stacks of Chl a that are arranged back to back with interdigitating phytyl chains stretched between two bilayers, is validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号