首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We address the adsorption of water on Pt(111) using x-ray absorption, x-ray emission, and x-ray photoelectron spectroscopy along with calculations in the framework of density functional theory. Using the direct relationship between the electronic structure and adsorbate geometry, we show that in the first layer all the molecules bind directly to the surface and to each other through the in-layer H bonds without dissociation, creating a nearly flat overlayer. The water molecules are adsorbed through alternating metal-oxygen (M-O) and metal-hydrogen (M-HO) bonds.  相似文献   

2.
The state of the surface of amorphous ice with a specific surface area of about 160 m2/g obtained by the condensation of water vapor at 77 K is studied by IR spectroscopy. As the temperature increases to 130–160 K, absorption bands of surface hydroxyl groups vanish, whereas changes in bands characteristic of hydroxyl groups in the bulk of ice are indicative of a phase transition of ice from amorphous to the polycrystalline structure. The surface sites of amorphous ice are characterized with low-temperature adsorption of carbon monoxide. It is shown that there are two types of CO adsorption sites, free hydroxyl groups and oxygen atoms of surface coordinately unsaturated water molecules. Upon adsorption of nitrogen, methane, and carbon monoxide, in addition to the perturbation of surface OH groups, reversible changes in the spectrum are observed in the region of vibrations of bulk hydroxyls, which indicate that the strength of hydrogen bonds between water molecules in the surface layer of icy particles increases approaching the strength of these bonds in the crystal and that the ice surface becomes less amorphous. These results indicate that the properties of the ice surface layer substantially depend on the presence of adsorbed molecules.  相似文献   

3.
史超  林晨森  陈硕  朱军 《物理学报》2019,68(8):86801-086801
石墨烯因其独特的分子构型、卓越的物理化学性能而受到广泛关注.本文首先利用分子动力学模拟比较了单层石墨烯、铜、二氧化硅三者表面的浸润性,除了接触角的比较,还分析了基底表面的水分子排布,得到石墨烯表面的特征水分子排布为:表面有两层密集的水分子层,其中靠近基底的密集水分子层中O—H键与垂直基底方向夹角集中在90°附近,并且基底表面的氢键几乎都垂直于基底.另一方面,本文研究了石墨烯浸润透明特性,发现在铜和二氧化硅上添加一层石墨烯,对铜的浸润性影响较小,对二氧化硅的浸润性影响很大,不仅使其上接触角显著增大,还使得基底表面的水分子排布呈现出类似单层石墨烯上的规律.本文使用分子动力学模拟方法从微观尺度验证了文献的实验结果,从基底表面水分子排布角度分析了石墨烯独特的浸润透明特性,为进一步开发石墨烯在微结构设计上的应用提供了理论指导.  相似文献   

4.
王明  段芳莉 《物理学报》2015,64(21):218201-218201
应用反应力场分子动力学方法, 模拟了水限制在全羟基化二氧化硅晶体表面间的弛豫过程, 研究了基底表面与水形成的界面氢键, 及其对受限水结构和动态特性行为的影响. 当基底表面硅醇固定时, 靠近基底表面水分子中的氧原子与基底表面的氢原子形成强氢键, 这使得靠近表面水分子中的氧原子比对应的氢原子更靠近基底表面, 从而水分子的偶极矩远离表面. 当基底表面硅醇可动时, 靠近基底表面水分子与基底表面原子形成两种强氢键, 一种是水分子中的氧原子与表面的氢原子形成的强氢键, 数量较少, 另一种是水分子中的氢原子与表面的氧原子形成的强氢键, 数量较多, 这使得靠近表面水分子中的氢原子比对应的氧原子更靠近表面, 从而水分子的偶极矩指向表面. 在相同几何间距下, 当基底表面硅醇可动时, 表面的活动性使得几何限制作用减弱, 导致了受限水分层现象没有固定表面限制下的明显. 此外, 固定表面比可动表面与水形成的界面氢键作用较强, 数量较多, 导致了可动表面限制下水的运动更为剧烈.  相似文献   

5.
Organosilanes with different organic functional groups are precursors of corresponding organosilanol which can be attached to the surface of oxide nanoparticles by silyation. In this work, surface of commercial TiO2 nanoparticles was modified by 3-aminopropyltrimethoxysilane (APS) and phenyltrimethoxysilane (PTMS) through an aqueous process. The amount of adsorbed organosilane was evaluated by energy dispersive X-ray spectroscopy and was found to be 3 times higher on PTMS treated sample than on APS treated sample. The orientation and bonding of the molecules on particle surface was analyzed using Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry. The obtained data confirmed that bonding of organosilanols on particle surface was realized through Si-O-Ti bonds and organic functional groups were extended away from particle surface on both APS and PTMS modified particles. It was found that phenylsilanol molecules are cross-linked to each other through Si-O-Si bonds, while such bonds are very little to none between aminosilanol molecules. A model of adsorption is proposed to explain these observations.  相似文献   

6.
The growth of crystalline water films on Pt(111) is investigated using rare gas physisorption. The water monolayer wets Pt(111) at all temperatures investigated (20-155 K). At low temperatures (T< or =120 K), additional water layers kinetically wet the monolayer surface. However, crystalline ice films grown at higher temperatures (T > 135 K) do not wet the water monolayer. These results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on Pt(111).  相似文献   

7.
The structure of water clusters (H2O)n (n = 40 -200) and bulk water were examined by molecular dynamics simulations using the TIP4P-ice water model. The analysis of the low-temperature structures in terms of the local structure index (LSI) showed a bimodal distribution. This finding supports the two-state picture derived from the analysis of the inherent dynamics of bulk SPC/E water. The water molecules at the outer interface of the coldest clusters are more structured than those in the inner core. The geometrical constraint of the interface forces the surface molecules to lose one neighbor and adopt a local angular distribution of hydrogen bonds resembling that found in the basal plane of ice Ih.  相似文献   

8.
Adsorption of HOCl on ice surface was studied using the ab initio molecular orbtial theory. We applied Hartree–Fock (HF) self-consistent field and the second-order Møller–Plesset (MP2) level of theory to cluster models of the (0001) surface ice Ih to optimize adsorption structures and binding energies. In all stable binding configurations, HOCl acts as a proton donor in a hydrogen bond. The presence of neighboring water molecules can strengthen the interaction of HOCl with ice. In the HOCl·(H2O)4 system, interaction hydrogen bond length is about 1.85 Å, and binding energies are −10.063−11.149 kcal mol−1. We also calculated the vibrational frequencies of HOCl affected by the ice surface.  相似文献   

9.
A theoretical study of the complexes formed between dimethyl sulfoxide (DMSO) and hypohalous acid (HOX, X = Cl, Br, and I) has been carried out at the MP2/aug-cc-pVTZ level. For each HOX, four minima binary complexes were found, two mainly with an OH???O hydrogen bond and the other two with an OX???O halogen bond. The hydrogen-bonded complexes are more stable than the halogen-bonded analogues for HOCl and HOBr, while both types of complexes have similar stability in the iodine case. A red shift was found for the associated H–O and X–O bond stretch vibrations and a small blue shift for the distant bonds. As the oxygen of DMSO simultaneously binds with two HOCl molecules, the corresponding interactions are weakened with diminutive effect. This diminutive effect is the largest in the complexes with two OH???O hydrogen bonds but the smallest in those with two OCl???O halogen bonds.  相似文献   

10.
Molecular dynamics simulations are employed to investigate the effects of temperature and size on the hydrogen-bond dynamics of interior molecules and surface molecules in a water nanocluster. The flexible three-centred (F3C) water model is invoked in the simulations. To inspect the dynamics of the interior hydrogen bonds and the surface hydrogen bonds, a spherical water nanocluster is modelled and then divided into interior molecules and surface molecules according to the density profile of the water nanocluster. It is observed that at higher temperatures the average number of hydrogen bonds decreases and yields faster hydrogen-bond relaxation for both interior molecules and surface molecules of the water nanocluster. Furthermore, the surface molecules have a lower average number of hydrogen bonds than the interior molecules. The lifetime of the surface hydrogen bonds is slightly longer than that of the interior hydrogen bonds, whereas the hydrogen-bond structural relaxation time of the surface molecules is more obviously slower than that of the interior molecules. Regarding the size effect, a larger water nanocluster is seen to have a larger average number of hydrogen bonds and a longer hydrogen-bond structural relaxation time.  相似文献   

11.
利用分子动力学模拟研究油水分子在方解石和白云石表面的吸附,分析体系的平衡构型、相对浓度、径向分布函数和吸附能,研究方解石和白云石的亲水性并对比二者差异.根据油水分子吸附规律分析方解石/白云石-油水体系作用机理.研究表明:白云石-油水体系更易达到热力学稳定状态并且体系更加稳定;方解石和白云石表面均能够优先吸附水分子并在表面形成双层结构的水膜.其中,白云石表面对水分子吸附强度大于方解石;稳定吸附过程分为两步:范德华力、静电力和O(CaCO3,CaMg(CO32)-H(H2O)氢键共同影响下水分子向晶体表面移动并吸附形成紧密吸附层;O(H2O)-H(H2O)氢键作用下游离的H2O向晶体表面靠近形成扩散层.从分子尺度解释方解石/白云石亲水特性,为碳酸盐岩储层润湿性研究奠定理论基础.  相似文献   

12.
颜克凤  李小森  陈朝阳  李刚  李志宝 《物理学报》2007,56(11):6727-6735
用分子动力学模拟方法研究甲烷水合物的热激法,化学试剂法,以及热激法结合化学试剂法分解,系统研究温度为277K和340K时添加液态水(WTR)和30wt%乙二醇(EG)溶液对水合物分解的影响.模拟显示WTR与水合物表面水分子形成氢键,破坏水合物原有的氢键平衡,造成笼状结构坍塌,水合物分解.EG分子中的羟基与水合物表面水分子形成氢键,从而破坏原有的稳定结构,造成水合物笼状结构被破坏,达到促进水合物分解,释放甲烷气体的效果.比较温度为277K和340K时添加WTR和30wt%EG溶液对水合物分解效果得出EG(340K)> WTR(340K)>EG(277K)>WTR(277K),热激法结合化学试剂法能更好促进水合物分解.  相似文献   

13.
We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H 2 O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H 2 O molecules and the ZnO nanotube, and adsorption energies of the H 2 O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H 2 O molecules adsorbed on its surface are calculated, the results of which showed that the H 2 O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H 2 O molecules by applying bias voltages.  相似文献   

14.
基于密度泛函理论的第一性原理方法模拟研究H_2O在CaCO_3(104)表面的吸附特征.首先,研究H_2O分子在CaCO_3(104)表面的顶位、桥位(短桥位、长桥位)和穴位上垂直和平行表面两种类型下的8种高对称吸附结构模型,结合吸附能和稳定吸附构象确定最优吸附位.而后,基于H_2O/CaCO_3(104)最优吸附结构模型,研究吸附前后H_2O和CaCO_3(104)表面的物理结构、电子结构(Mulliken电荷布居数、态密度、电子局域函数)的特征,分析H_2O/CaCO_3(104)表面之间的相互作用以及成键机理.研究结果:吸附能和体系稳定构象显示H_2O分子/CaCO_3(104)表面的最稳定吸附结构为穴位-平行.在穴位-平行位吸附后,H_2O分子的O-H键长和H-O-H键角均发生改变; CaCO_3晶体平行和垂直(104)表面方向上原子位置均发生改变,表面层变化最大;即吸附作用对H_2O分子和CaCO_3晶体的物理结构均产生较大影响; H_2O/CaCO3(104)最优吸附体系的Mulliken电荷布居数、电子态密度、电子局域函数的研究均说明H_2O分子与CaCO3(104)之间存在电子的转移形成化学键.其中,Ca-O(H_2O)形成离子键,H(H_2O)-O(CaCO_3)之间存在氢键作用.本文研究揭示了方解石表面水湿性的原因,同时为方解石润湿性的深入研究奠定基础.  相似文献   

15.
对限制在两个光滑的疏水板间的水进行了分子动力学模拟,观察到了两种晶体结构,都满足冰规则. 在1 GPa的压强和1.0 nm的板间距下获得的新的冰相是平坦的六边形-四边形三层冰. 在此结构中,靠近板的两层(外层)中的水分子形成六边形环,中间层的水分子形成四边形环. 对于外层的水分子,其四个氢键中的三个在同一层中,另一个氢键与中间层连接. 对于中间层的水分子,四个氢键中的两个在同一层中,而另外两个氢键与两个不同的外层相连. 虽然三层的形状不同,但其面密度却接近相等. 另一种结构是在0.8 nm的板间距和100  相似文献   

16.
The ejection of H2O, O2, H2 and H from water ice at 30–140 K, bombarded by 0.5–6 keV H+ and Ne+ was studied experimentally. Neon ions in this energy range deposit their energy in the ice by nuclear collisions, whereas with protons of 0.5 to 6 keV the energy deposition mechanism shifts gradually from predominantly nuclear collisions to predominantly electronic processes. The existing theory of nuclear sputtering predicts very well the yield of ejected water molecules and the experimental results in the region of electronic processes agree well with the experimental results of Lanzerotti, Brown and Johnson. However, the major mass loss from water by ion bombardment is via the ejection of O2, H2 and H atoms, which exceed the ejection of water molecules. O2 and H2 production is markedly enhanced at temperatures exceeding ~100 K, whereas H2O and H production are temperature independent, suggesting that O2 and H2 are produced in the bulk of the ice whereas H2O and H atoms are ejected from the surface or near surface layers.  相似文献   

17.
We report the experimental discovery of a new phase of ammonia ice, stable at pressures above 57 GPa and temperatures above 700 K. The combination of our experimental results and ab initio molecular dynamics simulations reveal that this new phase is a superionic conductor, characterized by a large proton diffusion coefficient (1.0×10(-4) cm(2)/s at 70 GPa, 850 K). Proton diffusion occurs via a Grotthuss-like mechanism, at a surprisingly lower temperature than in water ice. This may have implications for the onset of superionicity in the molecular ice mixtures present in Jovian planets. Our simulations further suggest that the anisotropic proton hopping along different H bonds in the molecular solid may explain the formation of the recently predicted ionic phase at low temperatures.  相似文献   

18.
Using molecular dynamics simulations, we examine the crystallisation process of the extended simple point charge model (SPC/E) water confined in a charged Pt nanochannel. The presence of the external electric field enhances the surface layering of water and promotes the super-cooled water to crystallise into Ic ice within tens of nanoseconds. Ic ice is found to nucleate from the interior of the water lamina, and the Pt(111) surfaces do not show a remarkable promotion of Ic ice nucleation. Structural analysis reveals that a two-dimensional hydrogen-bond network is built among the water molecules absorbed on the charged Pt surfaces, which influences the bonding of the molecules between the first and the second layers, and disturbs the formation of tetrahedral structures that match Ic ice, finally resulting in the nucleation-free near the walls. Such arrangements of water molecules remain in the subsequent growth of Ic ice and cause the slowdown of growth velocity while approaching surfaces.  相似文献   

19.
The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.  相似文献   

20.
任秀平  周波  李兰婷  王春雷 《中国物理 B》2013,22(1):16801-016801
The structure and dynamics of water in a thick film on an ionic surface are studied by molecular dynamic simulations. We find that there is a dense monolayer of water molecules in the vicinity of the surface. Water molecules within this layer not only show an upright hydrogen-down orientation, but also an upright hydrogen-up orientation. Thus, water molecules in this layer can form hydrogen bonds with water molecules in the next layer. Therefore, the two-dimensional hydrogen bond network of the first layer is disrupted, mainly due to the O atoms in this layer, which are affected by the next layer and are unstable. Moreover, these water molecules exhibit delayed dynamic behavior with relatively long residence time compared with those bulk-like molecules in the other layers. Our study should be helpful to further understand the influence of water film thickness on the interfacial water at the solid-liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号