首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The quantum ferroelectric phase transition of 18O-exchanged SrTiO3 (x% exchanged SrTiO3 is abbreviated as STO18-x) was investigated by Raman scattering as a function of x. The result indicates the ideal soft mode-type quantum ferroelectric phase transition of STO18-x, where the 18O exchange enhances the softening of the soft mode by the suppression of quantum fluctuation. In the vicinity of the quantum critical point (x approximately xc=33%), the system results in the ferroelectric-paraelectric phase coexistence state, in clear contrast to the homogeneous ferroelectric phase in STO18-x, whose x is sufficiently larger than xc. Simultaneously, the softening of the soft mode becomes strongly rounded with the underdamped oscillation. The present result indicates that the sensitivity of the soft phonon vibration to the mass disorder is dramatically enhanced in the vicinity of the quantum critical point.  相似文献   

2.
3.
Various physical systems were proposed for quantum information processing. Among those nanoscale devices appear most promising for integration in electronic circuits and large-scale applications. We discuss Josephson junction circuits in two regimes where they can be used for quantum computing. These systems combine intrinsic coherence of the superconducting state with control possibilities of single-charge circuits. In the regime where the typical charging energy dominates over the Josephson coupling, the low-temperature dynamics is limited to two states differing by a Cooper-pair charge on a superconducting island. In the opposite regime of prevailing Josephson energy, the phase (or flux) degree of freedom can be used to store and process quantum information. Under suitable conditions the system reduces to two states with different flux configurations. Several qubits can be joined together into a register. The quantum state of a qubit register can be manipulated by voltage and magnetic field pulses. The qubits are inevitably coupled to the environment. However, estimates of the phase coherence time show that many elementary quantum logic operations can be performed before the phase coherence is lost. In addition to manipulations, the final state of the qubits has to be read out. This quantum measurement process can be accomplished using a single-electron transistor for charge Josephson qubits, and a d.c.-SQUID for flux qubits. Recent successful experiments with superconducting qubits demonstrate for the first time quantum coherence in macroscopic systems.  相似文献   

4.
We discuss three different scenarios recently proposed to account for the non-Fermi liquid behavior near antiferromagnetic (AFM) quantum critical points in heavy-Fermion systems: (i) scattering of Fermi liquid quasiparticles by strong spin fluctuations near the spin-density-wave instability, (ii) the breakdown of the Kondo effect due to the competition with the RKKY interaction, and (iii) the formation of magnetic regions due to rare configurations of the disorder. Here we focus on the first scenario and show that it explains in some detail the anomalous temperature dependence of the resistivity observed, e.g. in CePd2Si2, CeNi2Ge2 or CeIn3. The interplay of strongly anisotropic scattering due to critical spin-fluctuations and weak isotropic impurity scattering leads to a regime with a resistivity for sufficiently large T and small ρ0.  相似文献   

5.
We present a scaling theory for charge transport in disordered molecular semiconductors that extends percolation theory by including bonds with conductances close to the percolating one in the random-resistor network representing charge hopping. A general and compact expression is given for the charge mobility for Miller-Abrahams and Marcus hopping on different lattices with Gaussian energy disorder, with parameters determined from numerically exact results. The charge-concentration dependence is universal. The model-specific temperature dependence can be used to distinguish between the hopping models.  相似文献   

6.
The phase separation behavior of superconducting cuprate systems is studied. Using experimental data obtained from electrical resistivity and susceptibility measurements on La2CuO4+ we demonstrate that the phase separation is of electronic and percolative nature. In addition, the experiments clearly prove the coexistence of bulk superconductivity and long-range antiferromagnetic (afm) order.  相似文献   

7.
The problem of nonlinear transport near a quantum phase transition is solved within the Landau theory for the dissipative insulator-superconductor phase transition in two dimensions. Using the nonequilibrium Schwinger round-trip Green function formalism, we obtain the scaling function for the nonlinear conductivity in the quantum-disordered regime. We find that the conductivity scales as E2 at low fields but crosses over at large fields to a universal constant on the order of e(2)/h. The crossover between these two regimes obtains when the length scale for the quantum fluctuations becomes comparable to that of the electric field within logarithmic accuracy.  相似文献   

8.
The atomic mass table presents zones where the structure of the states changes rapidly as a function of the neutron or proton number. Among them, notable examples are the A ≈ 100 Zr region, the Pb region around the neutron midshell (N = 104), and the N ≈ 90 rare-earth region. The observed phenomena can be understood in terms of either shape coexistence or quantum phase transitions. The objective of this study is to find an observable that can distinguish between both shape coexistence and quantum phase transitions. As an observable to be analyzed, we selected the two-neutron transfer intensity between the 0+ states in the parent and daughter nuclei. The framework used for this study is the Interacting Boson Model (IBM), including its version with configuration mixing (IBM-CM). To generate wave functions of isotope chains of interest needed for calculating transfer intensities, previous systematic studies using IBM and IBM-CM were used without changing the parameters. The results of two-neutron transfer intensities are presented for Zr, Hg, and Pt isotopic chains using IBM-CM. Moreover, for Zr, Pt, and Sm isotopic chains, the results are presented using IBM with only a single configuration, i.e., without using configuration mixing. For Zr, the two-neutron transfer intensities between the ground states provide a clear observable, indicating that normal and intruder configurations coexist in the low-lying spectrum and cross at A = 98 → 100. This can help clarify whether shape coexistence induces a given quantum phase transition. For Pt, in which shape coexistence is present and the regular and intruder configurations cross for the ground state, there is almost no impact on the value of the two-neutron transfer intensity. Similar is the situation with Hg, where the ground state always has a regular nature. For the Sm isotope chain, which is one of the quantum phase transition paradigms, the value of the two-neutron transfer intensity is affected strongly.  相似文献   

9.
We study a one-dimensional totally asymmetric exclusion process with random particle attachments and detachments in the bulk. The resulting dynamics leads to unexpected stationary regimes for large but finite systems. Such regimes are characterized by a phase coexistence of low and high density regions separated by domain walls. We use a mean-field approach to interpret the numerical results obtained by Monte Carlo simulations, and we predict the phase diagram of this nonconserved dynamics in the thermodynamic limit.  相似文献   

10.
We study the mean-field static solution of the Blume-Emery-Griffiths-Capel model with quenched disorder, an Ising-spin lattice gas with random magnetic interaction. The thermodynamics is worked out in the full replica symmetry breaking scheme. The model exhibits a high temperature/low density paramagnetic phase. As temperature decreases or density increases, a phase transition to a full replica symmetry breaking spin-glass phase occurs. The nature of the transition can be either of the second order or, at temperature below a given critical value, of the first order in the Ehrenfest sense, with a discontinuous jump of the order parameter, a latent heat, and coexistence of phases.  相似文献   

11.
Landauer–Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.  相似文献   

12.
We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having different ratios l( ||)/l( perpendicular). We find, in addition to the fact that a higher fluctuation level deltaB/B(0) makes the system more stochastic, that by increasing the ratio l( ||)/l( perpendicular) at fixed deltaB/B(0), the stochasticity increases. It appears that the different transport regimes can be organized in terms of the Kubo number R=(deltaB/B(0))(l( ||)/l( perpendicular)). The simulation results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When R<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. When R approximately 1 the diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(2) is recovered. Finally, for R>1 the percolation scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(0.7) is obtained.  相似文献   

13.
With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property.  相似文献   

14.
In contrast to standard thermodynamic models, we observe phase coexistence over an extended temperature range at a first-order surface phase transition. We have measured the domain evolution of the Si(111)-( 7x7) to ( 1x1) phase transition with temperature, using low-energy electron microscopy. Comparison with detailed, quantitative theoretical predictions shows that coexistence is due to long-range elastic and electrostatic domain interactions. Phase coexistence is predicted to be a universal feature of surface phase transitions.  相似文献   

15.
We present experimental evidence of the equilibrium coexistence between crystalline phases in heteroepitaxial films of MnAs on GaAs. The phases, which can coexist in the bulk system only at one temperature point, coexist in the epitaxial film over a wide temperature interval. An apparent contradiction with the Gibbs phase rule is resolved by the presence of strain in the film.  相似文献   

16.
We present the impact of the film thickness on the coexistence of various magnetic phases and its link to the magnetoresistance of Nd0.51Sr0.49MnO3 thin films. These epitaxial films are deposited on LaAlO3 (001) substrates by DC magnetron sputtering. Films with thicknesses of approximately 30 nm are found to be under full compressive strain while those with thicknesses ∼100 nm and beyond exhibit the presence of both strained and relaxed phases, as evidenced from X-ray diffraction studies. Both films exhibit multiple magnetic transitions controlled by strong electron correlations and phase coexistence. These films also display insulator–metal transitions (IMT) and colossal magnetoresistance (CMR) under moderate magnetic fields. Among the two set of films, only the 30-nm films show a weak signature of charge ordering at T≈50 K. Even at temperatures much lower than the IMT, the 30-nm films show huge magnetoresistance (MR) ∼80%. This suggests presence of softened charge-ordered insulating (COI) clusters that are transformed into ferromagnetic metallic (FMM) ones by the external magnetic field. In the 100-nm films, the corresponding MR is suppressed to less than 20%. Our study demonstrates that the softening of the COI phase is induced by the combined effect of the in-plane compressive strain and a slight reduction in Sr concentration.  相似文献   

17.
We propose a new mechanism to generate a dc current of particles at zero bias based on a noble interplay between coherence and decoherence. We show that a dc current arises if the transport process in one direction is maintained coherent while the process in the opposite direction is incoherent. We provide possible implementations of the idea using an atomic Michelson interferometer and a ring interferometer.  相似文献   

18.
We study the interplay of collective dynamics and damping in the presence of correlations and bosonic fluctuations within the framework of a newly proposed model, which captures the principal transport mechanisms that apply to a variety of physical systems. We establish close connections to the transport of lattice and spin polarons, or the dynamics of a particle coupled to a bath. We analyze the model by exactly calculating the optical conductivity, Drude weight, spectral functions, ground state dispersion and particle-boson correlation functions for a 1D infinite system.  相似文献   

19.
20.
Membranes containing highly charged biomolecules can have a minimal free-energy state at small separations that originates in the strongly correlated electrostatic interactions mediated by counterions. This phenomenon can lead to a condensed, lamellar phase of charged membranes that coexists in thermodynamic equilibrium with a very dilute membrane phase. Although the dilute phase is mostly water, entropy dictates that this phase must contain some membranes and counterions. Thus, electrostatics alone can give rise to the coexistence of a condensed and an unbound lamellar phase. We use numerical simulations to predict the nature of this coexistence when the charge density of the membrane is large, for the case of multivalent counterions and for a membrane charge that is characteristic of biomolecules. We also investigate the effects of counterion size and salt on the two coexisting phases. With increasing salt concentration, we predict that electrostatic screening by salt can destroy the phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号