首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The line density of line defects in terms of a two-component vector order parameter are obtained from the definition of topological charges of line defects. The spatial structure and bifurcation of line defects in three-dimensional space are also studied from the topological properties of the two-component vector order parameter. The branch conditions for generating, annihilating, colliding, splitting, and merging of line defects are obtained according to the properties of the two-component vector order parameter itself. It is found that the velocities of line defects are infinite when they are being annihilated or generated, which is obtained only from the topological properties of the two-component vector order parameter.  相似文献   

2.
We consider a one-dimensional Ising model in a transverse magnetic field coupled to a dissipative heat bath. The phase diagram and the critical exponents are determined from extensive Monte Carlo simulations. It is shown that the character of the quantum phase transition is radically altered from the corresponding nondissipative model and the double well coupled to a dissipative heat bath with linear friction. Spatial couplings and the dissipative dynamics combine to form a new quantum criticality which is independent of dissipation strength.  相似文献   

3.
The presence of topological defects in a material can modify its electrical, acoustic or thermal properties. However, when a group of defects is present, the calculations can become quite cumbersome due to the differential equations that can emerge from the modeling. In this work, we express phonons as geodesics of a 2 + 1 spacetime in the presence of a channel of dislocation dipoles in a crystalline environment described analytically in the continuum limit with differential geometry methods. We show that such a simple model of 1D array of topological defects is able to guide phonon waves. The presence of defects indeed distorts the effective metric of the material, leading to an anisotropic landscape of refraction index which curves the path followed by phonons, with focusing/defocusing properties depending on the angle of the incident wave. As a consequence, using Boltzmann transfer equation, we show that the defects may induce an enhancement or a depletion of the elastic energy transport. We comment on the possibility of designing artificial materials through the presence of topological defects.  相似文献   

4.
任继荣  戎树军  朱涛 《中国物理 B》2009,18(7):2901-2904
Based on Duan's topological current theory, we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system. This method shows explicitly the fine topological structure of defects. The branch processes of defects in the vector order parameter system have also been investigated with this method.  相似文献   

5.
A method is presented to obtain stochastic equations of motion for topological defects from the underlying TDGL-like stochastic dissipative field equations. The method makes use of virtual displacements of the Goldstone coordinates of topological defects. Effects of kinematical constraints among Goldstone coordinates are studied. The method is applied to modulated systems and we obtain stochastic equations of motion for interfaces (domain walls) and vortex lines (dislocation or defect lines). The driving force for a vortex line is found to include besides the usual surface tension force a new force due to misfit, which is an analogue of the Magnus force on a quantized vortex line and the Peach-Kochler force on a dislocation. A general expression for interactions between parts of interfaces is obtained in terms of asymptotic forms of field variables far from interfaces.  相似文献   

6.
When a system of correlated electrons is embedded in a dissipative environment, new emergent phenomena might occur due to the interplay of correlation and dissipation. Here we focus on quantum impurity systems with coupling to a bosonic bath. For the theoretical investigation we introduce the bosonic numerical renormalization group method which has been initially set up for the spin-boson model. The role of both correlations and dissipation is described in the context of two-electron transfer systems. We also discuss prospects for the investigation of lattice models of correlated electrons with coupling to a dissipative bath.  相似文献   

7.
何敬  寇谡鹏 《中国物理 B》2016,25(11):117310-117310
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states.In this paper,we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters.We find that both topological defects(quantized vortices) and non topological defects(vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects.These topological mid-gap states have nontrivial topological properties,including the nonzero Chern number and the gapless edge states.Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters.  相似文献   

8.
In this paper, we investigate the dissipative quantum dynamics of a harmonic oscillator in the presence a deformed bath by considering the Lamb shift term. The deformed bath is modelled by a collection of deformed quantum harmonic oscillators as a generalization of Hopfield model. The Langevin equation for both the photon number and the fluctuation spectrum under the Weisskopf–Winger approximation are obtained and discussed.  相似文献   

9.
《Comptes Rendus Physique》2018,19(6):451-483
In this review, we provide an introduction to and an overview of some more recent advances in real-time dynamics of quantum impurity models and their realizations in quantum devices. We focus on the Ohmic spin–boson and related models, which describe a single spin-1/2 coupled with an infinite collection of harmonic oscillators. The topics are largely drawn from our efforts over the past years, but we also present a few novel results. In the first part of this review, we begin with a pedagogical introduction to the real-time dynamics of a dissipative spin at both high and low temperatures. We then focus on the driven dynamics in the quantum regime beyond the limit of weak spin–bath coupling. In these situations, the non-perturbative stochastic Schrödinger equation method is ideally suited to numerically obtain the spin dynamics as it can incorporate bias fields hz(t) of arbitrary time-dependence in the Hamiltonian. We present different recent applications of this method: (i) how topological properties of the spin such as the Berry curvature and the Chern number can be measured dynamically, and how dissipation affects the topology and the measurement protocol, (ii) how quantum spin chains can experience synchronization dynamics via coupling with a common bath. In the second part of this review, we discuss quantum engineering of spin–boson and related models in circuit quantum electrodynamics (cQED), quantum electrical circuits, and cold-atoms architectures. In different realizations, the Ohmic environment can be represented by a long (microwave) transmission line, a Luttinger liquid, a one-dimensional Bose–Einstein condensate or a chain of superconducting Josephson junctions. We show that the quantum impurity can be used as a quantum sensor to detect properties of a bath at minimal coupling, and how dissipative spin dynamics can lead to new insight in the Mott–superfluid transition.  相似文献   

10.
We study the transport properties of pinned striped quantum Hall phases. We show that, under quite general assumptions, the macroscopic conductivity tensor satisfies a semicircle law. In particular, this result is valid for both smectic and nematic stripe phases, independent of the presence of topological and orientational defects such as dislocations and grain boundaries. As a special case, our results explain the experimental validity of a product rule for the dissipative part of the resistivity tensor, which was previously derived by MacDonald and Fisher (cond-mat/9907278) for a perfect stripe structure.  相似文献   

11.
Ying-Hua Ji 《Physics letters. A》2008,372(21):3874-3877
Taking into account the interactions between electrons and phonons, we study the dynamic behavior of a dissipative mesoscopic circuit for pure initial coherent state of phonon bath modes by virtue of the IWOP technique. It shows that if the bath modes are initially in coherent states, some phenomena like Brownian behavior will appear in mean charge and current of the mesoscopic circuit. The quantum fluctuations of charge and current are constant and irrelevant to the coupled coefficients between electrons and phonons.  相似文献   

12.
Optically engineering the topological properties of a spin Hall insulator   总被引:1,自引:0,他引:1  
Time-periodic perturbations can be used to engineer topological properties of matter by altering the Floquet band structure. This is demonstrated for the helical edge state of a spin Hall insulator in the presence of monochromatic circularly polarized light. The inherent spin structure of the edge state is influenced by the Zeeman coupling and not by the orbital effect. The photocurrent (and the magnetization along the edge) develops a finite, helicity-dependent expectation value and turns from dissipationless to dissipative with increasing radiation frequency, signalling a change in the topological properties. The connection with Thouless' charge pumping and nonequilibrium zitterbewegung is discussed, together with possible experiments.  相似文献   

13.
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole–dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.  相似文献   

14.
We study the topological properties of the manifolds which describe uniaxial and biaxial nematics in order to compare and classify all types of bulk and surface defects that can arise in a nematic liquid crystal. We explain how topological charges can be assigned both to isotropic defects in uniaxial nematics and to uniaxial defects in biaxial nematics; we further see how it is possible to distinguish between isolated surface defects and surface defects which extend in the bulk, and between surface defects which can relax in the bulk and defects forced to stay on the surface. Received: 28 November 1994 / Accepted: 30 September 1996  相似文献   

15.
Surface states--the electronic states emerging as a solid material terminates at a surface--are usually vulnerable to contaminations and defects. The robust topological surface state(s) (TSS) on the three-dimensional topological insulators provide a perfect platform for exploiting surface states in less stringent environments. Employing first-principles density functional theory calculations, we demonstrate that the TSS can play a vital role in facilitating surface reactions by serving as an effective electron bath. We use CO oxidation on gold-covered Bi(2)Se(3) as a prototype example, and show that the robust TSS can significantly enhance the adsorption energy of both CO and O(2) molecules, by promoting different directions of static electron transfer. The concept of TSS as an electron bath may lead to new design principles beyond the conventional d-band theory of heterogeneous catalysis.  相似文献   

16.
17.
In this study, we describe a geometric model of a fullerene molecule with Ih symmetry. We combine the well known non-Abelian monopole approach and the geometric theory of defects, where every topological defect is associated with curvature and torsion, to describe a fullerene molecule. The geometric theory of defects in solids is used to consider the topological defects that allow this molecule to form and we apply a continuum formulation to describe this spherical geometry in the presence of an external Aharonov–Bohm flux. We solve a Dirac equation for this model and obtain the eigenvalues and eigenfunction of the Hamiltonian, and we obtain the persistent current for this model and show that it depends on the geometrical and topological properties of the fullerene.  相似文献   

18.
19.
Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems   总被引:2,自引:1,他引:2  
We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The proposed Hamiltonian couples the given system to auxiliary fields, in the universal form of a so-called canonical heat bath. After integrating out the heat bath the original dissipative evolution is exactly reproduced. Furthermore, we show that the dynamics associated to a minimal Hamiltonian are essentially unique, up to a natural class of isomorphisms. Using this formalism, we obtain closed form expressions for the energy density, energy flux, momentum density, and stress tensor involving the auxiliary fields, from which we derive an approximate, “Brillouin-type,” formula for the time averaged energy density and stress tensor associated to an almost mono-chromatic wave.  相似文献   

20.
Various types of topological defects in graphene are considered in the framework of the continuum model for long-wavelength electronic excitations, which is based on the Dirac–Weyl equation. The condition for the electronic wave function is specified, and we show that a topological defect can be presented as a pseudomagnetic vortex at the apex of a graphitic nanocone; the flux of the vortex is related to the deficit angle of the cone. The cases of all possible types of pentagonal defects, as well as several types of heptagonal defects (with the numbers of heptagons up to three, and six) are analyzed. The density of states and the ground state charge are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号