首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present atomic-scale friction force measurements that strongly suggest that the capillary condensation of water between a tungsten tip and a graphite surface leads to the formation of ice at room temperature. This phenomenon increases the friction force, introduces a short-term memory in the form of an elastic response against shearing, and allows us to "write" a temporary line of ice on a hydrophobic surface. Rearrangements of the condensate are shown to take place on a surprisingly slow time scale of seconds.  相似文献   

2.
The behavior of water under extreme confinement and, in particular, the lubrication properties under such conditions are subjects of long-standing controversy. Using a dedicated, high-resolution friction force microscope, scanning a sharp tungsten tip over a graphite surface, we demonstrate that water nucleating between the tip and the surface due to capillary condensation rapidly transforms into crystalline ice at room temperature. At ultralow scan speeds and modest relative humidities, we observe that the tip exhibits stick-slip motion with a period of 0.38+/-0.03 nm, very different from the graphite lattice. We interpret this as the consequence of the repeated sequence of shear-induced fracture and healing of the crystalline condensate. This phenomenon causes a significant increase of the friction force and introduces relaxation time scales of seconds for the rearrangements after shearing.  相似文献   

3.
We investigate atomic scale friction between clean graphite surfaces by using molecular dynamics. The simulation reproduces atomic scale stick-slip motion and a low frictional coefficient, both of which are observed in experiments using frictional force microscope. It is made clear that the microscopic origin of low frictional coefficients of graphite lies on the honeycomb structure of each layer, not only on the weak interlayer interaction as believed so far.  相似文献   

4.
Modulations of the friction force in dry solid friction are usually attributed to macroscopic stick-slip instabilities. Here we show that a distinct, quasistatic mechanism can also lead to nearly periodic force oscillations during sliding contact between an elastomer patterned with parallel grooves, and abraded glass slides. The dominant oscillation frequency is set by the ratio between the sliding velocity and the grooves period. A model is derived which quantitatively captures the dependence of the force modulations amplitude with the normal load, the grooves period, and the slides roughness characteristics. The model's main ingredient is the nonlinearity of the friction law. Since such nonlinearity is ubiquitous for soft solids, this "fingerprint effect" should be relevant to a large class of frictional configurations and have important consequences in human digital touch.  相似文献   

5.
Hexagonal boron nitride (h-BN) has a low friction coefficient and weak surface attractive force similar to graphite. Furthermore, while graphite is conductive, BN is a good insulator. These properties make it suitable for application like lubricating coating or as an insulator/buffer layer in electronic devices. The synthesize of h-BN layer by surface segregation phenomena and mechanical properties of the h-BN surface segregated on Cu substrate have been investigated. During in situ annealing, the surface segregation of BN occurred on Cu/BN film deposited by deposition process with a rf magnetron co-sputtering system. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis showed that though the h-BN layer synthesized was not covered whole area of substrate but the h-BN layers partially covered substrate. And the concentration of oxygen on the surface after exposure in air is decreased with increase of BN concentration. The topography of atomic forces microscopy (AFM) showed that h-BN phases surface segregated are discontinuous droplet shape. The force curves of AFM and friction force of lateral force microscopy (LFM) showed that the h-BN droplet surface segregated have very weak attractive force and low friction coefficient equal to h-BN sintered plate.  相似文献   

6.
Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be similar to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM and STM images differ substantially depending on the distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift, and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.  相似文献   

7.
For a large region of dense fluid states of a Lennard-Jones system, we have calculated the friction coefficient by the force autocorrelation function of a Brownian-type particle by molecular dynamics (MD). The time integral over the force autocorrelation function showed an interesting behavior and the expected plateau value when the mass of the Brownian particle was chosen to be about a factor of 100 larger than the mass of the fluid particle. Sufficient agreement was found for the friction coefficient calculated by this way and that obtained by MD calculations of the self-diffusion coefficient using the common relation between these coefficients. Furthermore, a modified friction coefficient was determined by integration of the force autocorrelation function up to the first maximum. This coefficient can successfully be used to derive a reasonable soft part of the friction coefficient necessary for the Rice-Allnatt approximation for the shear viscosity of simple liquids.  相似文献   

8.
A recent molecular dynamics (MD) study showed that the friction coefficient of a simple fluid is obtainable by the integral over the autocorrelation function (ACF) of the total force of a Brownian-type particle. The results indicated that mass ratios 50M/m200 of the massive and the light particle suffice to yield accurate friction coefficients. Complementarily, we calculate the random force ACF of the light particle, which is the memory function force of the ACF of the velocity apart from a constant factor, for all the states of the Lennard-Jones system investigated previously. A detailed comparison is presented of the memory function, the total force ACF of the fluid particle, and the total force ACF of the massive particle. The MD results confirm quantitatively our theoretical predictions: (i) on a time scale corresponding to the dynamics of the massive particle the total force ACF of that particle approximates well the memory function, while there are slight differences between them on a short time scale, (ii) the total force ACF of the liquid particle deviates significantly from the memory function already after extremely short time and is thus completely useless for the determination of the friction coefficient, (iii) using the total force ACF of a heavy particle for the determination of the friction constant with mass ratios ofM/m=50 up to 200, the pseudo plateau value of the time integral is often not very noticeable, as the memory function is only approximated and the total force ACF of the massive particle has a negative part at medium times. In those cases the integration has to be extended to include the negative part.  相似文献   

9.
从理论和实验上说明石墨、铜等抗磁性的"非磁"物质在磁场中也受到磁场的作用力.实验中尝试了各种不同类型的永磁体序列,并利用4块一组的永磁铁序列产生梯度场,使磁铁表面上方产生可供抗磁性物质悬浮的稳定区域,成功实现了石墨的悬浮.此外,还利用顺磁性溶液及电磁铁实现了氧化铝和硅的悬浮.  相似文献   

10.
Active control of friction by ultrasonic vibration is a well-known effect with numerous technical applications ranging from press forming to micromechanical actuators. Reduction of friction is observed with vibration applied in any of the three possible directions (normal to the contact plane, in the direction of motion and in-plane transverse). In this work, we consider the multi-mode active control of sliding friction, where phase-shifted oscillations in two or more directions act at the same time. Our analysis is based on a macroscopic contact-mechanical model that was recently shown to be well-suited for describing dynamic frictional processes. For simplicity, we limit our analysis to a constant, load-independent normal and tangential stiffness and two superimposed phase-shifted harmonic oscillations, one of them being normal to the plane and the other in the direction of motion. As in previous works utilizing the present model, we assume a constant local coefficient of friction, with reduction of the observed force of friction arising entirely from the macroscopic dynamics of the system. Our numerical simulations show that the resulting law of friction is determined by just three dimensionless parameters. Depending on the values of these parameters, three qualitatively different types of behavior are observed: (a) symmetric velocity-dependence of the coefficient of friction (same for positive and negative velocities), (b) asymmetric dependence with respect to the sign of the velocity, but with zero force at zero velocity, and (c) asymmetric dependence with nonzero force at zero velocity. The latter two cases can be interpreted as a "dynamic ratchet" (b) and an actuator (c).  相似文献   

11.
用一维Frenkel-Kontorova模型,对相互接触的两个单原子分子链具有相对运动趋势时所产生的最大静摩擦力进行了研究.分别在相邻原子的距离与周期势场的周期比b/a为可公度(commensurate)、黄金分割(golden mean)、螺旋分割(spiral mean)三种情况下,描述了特殊垫底势力的振幅A与分子链静摩擦力的关系,在特殊垫底势力的作用下上层原子链弹性系数K对静摩擦力的影响.研究表明,垫底势力的形式对静摩擦力的大小有很重要的影响.  相似文献   

12.
用一维Frenkel-Kontorova模型,对相互接触的两个单原子分子链具有相对运动趋势时所产生的最大静摩擦力进行了研究.分别在相邻原子的距离与周期势场的周期比b/a为可公度(commensurate)、黄金分割(golden mean)、螺旋分割(spiral mean)三种情况下,描述了特殊垫底势力的振幅A与分子链静摩擦力的关系,在特殊垫底势力的作用下上层原子链弹性系数K对静摩擦力的影响.研究表明,垫底势力的形式对静摩擦力的大小有很重要的影响. 关键词: Frenkel-Kontorova模型 静摩擦力  相似文献   

13.
In this work some carbon-based coatings were studied by atomic force microscopy (AFM) and lateral force microscopy (LFM) techniques in order to evaluate their microstructure and friction properties at the micro and nanoscale. With this aim, four samples were prepared by magnetron sputtering: an amorphous carbon film (a-C), two nanocomposites TiC/a-C with different phase ratio (∼1:1 and ∼1:3) and a nanocrystalline TiC sample. Additionally, a highly oriented pyrolytic graphite (HOPG) and an amorphous hydrogenated carbon coating (a-C:H) were included to help in the evaluation of the influence of the roughness and the hydrogen presence respectively. The topography (roughness) of the samples was studied by AFM, whereas LFM was used to measure the friction properties at the nanoscale by two different approaches. Firstly, an evaluation of possible friction contrast on the samples was done. This task was performed by subtraction of forward and reverse images and lately confirmed by the study of lateral force profiles in both directions and the histograms of the subtraction images. Secondly, an estimation of the average friction coefficient over the analysed surface of each sample was carried out. To take into account the tip evolution/damaging, mica was used as a reference before and after each sample (hereafter called sandwich method), and samples-to-mica friction ratios were calculated. The LFM was shown to be a useful tool to characterise a mixture of phases with different friction coefficients. In general, the friction ratios seemed to be dominated by the amorphous carbon phase, as it was impossible to distinguish among samples with different proportions of the amorphous phase (friction ratios between 1.5 and 1.75). Nevertheless, it could be concluded that the differences in friction behaviour arose from the chemical aspects (nature of the phase and hydrogen content) rather than surface characteristics, since the roughness (Ra values up to 5.7 nm) does not follow the observed trend. Finally, the Ogletree method was employed in order to calibrate the lateral force and estimate the friction coefficient of our samples. A good agreement was found with macroscopic and literature values going from ∼0.3 for TiC to ∼0.1 for pure carbon.  相似文献   

14.
The deposition of size-selected clusters represents a new route to the fabrication of truly nanometer-scale surface architectures, e.g., nanopores. We report a systematic experimental study, coupled with molecular dynamics simulations, of the implantation depths of size-selected Au7, Ag7, and Si7 clusters in the model graphite substrate. For impact energies between 1.0 and 5.5 keV, we find that the implantation depth scales linearly with the momentum of the clusters for all three types of cluster. This "universal" behavior is consistent with a (viscous) retarding force proportional to the velocity of the cluster, akin to Stokes's law.  相似文献   

15.
We present measurements of the electric potential fluctuations on the surface of highly oriented pyrolytic graphite using electrostatic force and atomic force microscopy. Micrometric domainlike potential distributions are observed even when the sample is grounded. Such potential distributions are unexpected given the good metallic conductivity of graphite because the surface should be an equipotential. Our results indicate the coexistence of regions with "metalliclike" and "insulatinglike" behaviors showing large potential fluctuations of the order of 0.25 V. In lower quality graphite, this effect is not observed. Experiments are performed in Ar and air atmospheres.  相似文献   

16.
王培君  江美福  杜记龙  戴永丰 《物理学报》2010,59(12):8920-8926
以高纯石墨做靶,CHF3和Ar气为源气体,采用射频反应磁控溅射法在不同流量比条件下制备了氟化类金刚石(F-DLC)薄膜.利用原子力显微镜、纳米压痕仪、拉曼光谱和红外光谱、摩擦磨损测试仪对薄膜的表面形貌、硬度、键结构以及摩擦性能做了具体分析.表面形貌测试结果表明,制备的薄膜整体均匀致密,表现出了良好的减摩性能.当CHF3与Ar气流量比r为1:6时,所得薄膜的摩擦系数减小至0.42,而纳米压痕结果显示,此时薄膜的硬度也最高.拉曼和红外光谱显示,随着r的增加,薄膜中的F浓度呈上升趋势,薄膜中的芳香环比例减小.研究表明,F原子的键入方式是影响F-DLC薄膜摩擦系数的一个重要因素,CF2反对称伸缩振动强度的减弱和CC中适量碳氢氟键的形成都能导致薄膜具有相对较低的摩擦系数.  相似文献   

17.
This paper presents the results of a study of the frictional forces associated with the tangential harmonic displacements of a slider in the frequency range from 20 to 1000 Hz.On the basis of our experiments, we establish that the frictional interaction creates a normal periodic force which, in turn, creates normal vibrations leading to a change in the actual load and hence in the peak value of the force of friction.A change in the force of friction with the frequency of the tangential displacements has also been noted elsewhere [1]; however, the causes of this behavior have not previously been ascertained.We show that the force of friction depends significantly not only on the amplitude of the normal vibrations but also on the phase-frequency-relations between the vibrations in the normal and tangential directions.  相似文献   

18.
颗粒物质中静摩擦力与接触面形状有关   总被引:2,自引:0,他引:2  
用实验方法研究了探测棒在颗粒物质中受到的最大静摩擦力与棒截面形状的关系.观测到圆棒受到的最大静摩擦力最大,方棒次之,扁棒最小.根据力的传递原理,分析棒形状对颗粒物质内部力链传递的影响,计算结果与实验基本吻合.  相似文献   

19.
To understand mechanisms of chemical mechanical planarization (CMP), an atomic force microscope (AFM) was used to characterize polished layer surfaces formed by selective transfer after a set of polishing experiments. It is know that in the process of friction of two materials and in the presence of own lubricants, wear phenomenon itself manifests as a transfer of material from an element of a friction couple on the other, this phenomenon being characteristic to the selective transfer process. A selective transfer can be safely achieved in a friction couple, if there is a favorable energy, and in the presence of relative movement, if in the friction area is a material made by copper and the lubricant is adequate (glycerin or special lubricant). The forming selective layer on the contact surfaces makes that the friction force to be very low because of the structure formed by selective transfer. To optimize the CMP process, one needs to obtain information on the interaction between the slurry abrasive particles (with the size range of about 30–70 nm) and the polished surface. To study such interactions, we used AFM. Surface analysis of selective layer using the AFM revealed detailed surface characteristics obtained by CMP. Studying the selective layer CMP, of which the predominated one is copper (in proportion of over 85%), we found that the AFM scanning removes the surface oxide layer in different rates depending on the depth of removal and the pH of the solution. Oxide removal happens considerably faster than the copper CMP removal from the selective layer. This is in agreement with generally accepted models of copper CMP. It was found that removal mechanisms depend on the slurry chemistry, potential per cent of oxidizer, and the applied load. This presentation discusses these findings. Both load force and the friction forces acting between the AFM tip and surface during the polishing process were measured. One big advantage of using the AFM tip (of radius about 50 nm) as abrasive silica particle is that we can measure forces acting between the particle-tip and the surface being polished. Here, we report measurement of the friction force while scratching and polishing. The correlation between those forces and removal rate is discussed.  相似文献   

20.
Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS_2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS_2 and graphite by conductive atom force microscope(C-AFM). It was found that at high pressure, the contact quality between graphite and MoS_2 is significantly improved. This pressure-mediated contact quality improvement between MoS_2 and graphite comes from the enhanced charge transfer between MoS_2 and graphite when MoS_2 is stretched. Our results provide a new way to enhance the contact quality between MoS_2 and graphite for further applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号