首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new class of sterile neutrino dark matter is suggested by an explanation for time variations in the solar neutrino flux in which coupling of sterile neutrinos to other matter is via a very small flavor off-diagonal transition magnetic moment, TMM. The dark matter sterile neutrino’s decay in the radiative channel then depends on the local magnetic field and the unknown value of the TMM. An interesting application of this model uses the DAMA/LIBRA claimed detection of dark matter (assuming they are observing the electromagnetic signal) to provide the decay rate in the Earth’s field, and hence the TMM value. That version of the model is then examined to see if it can be falsified by cosmic X-ray observations or by other direct detection experiments. Particularly the latter could provide a simple, definitive test of this dark matter candidate, which would bring concordance to these experiments.  相似文献   

2.
Galaxy hierarchical formation theories, numerical simulations, the discovery of the Sagittarius Dwarf Elliptical Galaxy (SagDEG) in 1994 and more recent investigations suggest that the dark halo of the Milky Way can have a rich phenomenology containing non-thermalized substructures. In the present preliminary study, we investigate the case of the SagDEG (the best known satellite galaxy in the Milky Way crossing the solar neighborhood) analyzing the consequences of its dark matter stream contribution to the galactic halo on the basis of the DAMA/NaI annual modulation data. The present analysis is restricted to some WIMP candidates and to some of the astrophysical, nuclear and particle physics scenarios. Other candidates such as e.g. the light bosonic ones we discussed elsewhere, and other non-thermalized substructures are not yet addressed here. PACS 95.35.+d  相似文献   

3.
Dark matters     
Despite the new results on the estimate of cosmological parameters, the need for dark matter, both baryonic and nonbaryonic, galactic and intergalactic, is still with us. For baryonic dark matter the remaining possibilities are mostly either intergalactic hot gas or massive compact halo objects. For nonbaryonic dark matter the most likely candidates are the so-called WIMPs, the prototype of which could be the lightest supersymmetric particle. These particles are actively searched for at accelerators and, in our neighborhood, through direct detection or by their annihilation products.  相似文献   

4.
The differential event rate for direct detection of dark matter,both the time averaged and the modulated one due to the motion of the Earth,are discussed.The calculations focus on relatively light cold dark matter candidates (WIMP) and low energy transfers.It is shown that for sufficiently light WIMPs the extraction of relatively large nucleon cross sections is possible.Furthermore for some WIMP masses the modulation amplitude may change sign,meaning that,in such a case,the maximum rate may occur six months later than naively expected.This effect can be exploited to yield information about the mass of the dark matter candidate,if and when the observation of the modulation of the event rate is established.  相似文献   

5.
《物理》2015,44(11):722-733
The nature of dark matter in our universe is one of the most challenging problems in science today. A most probable class of dark matter is the weakly interacting massive particles (WIMPs), which exhibit a wide range of features. Current experiments searching for dark matter aim for direct detection via the elastic scattering off ordinary matter in terrestrial detectors. This paper will present the main methods, status and roadmap for the direct detection of dark matter. The world's deepest laboratory, China Jinping underground laboratory and its extension, will also be described. Finally, we will give a detailed introduction to the research history, detection technologies, current results, and future prospects of China dark matter experiment (CDEX).  相似文献   

6.
The dark matter sector may be more complicated than anticipated. An inelastically scattering dark matter with a mass splitting above one MeV will make direct detection experiments hopeless, and render LHC the primary chance for discovery. We perform a model-independent study of inelastic dark matter at the LHC, concentrating on the parameter space with the mass splitting between the excited and ground states of dark matter above a few hundred MeV. The generic signatures of inelastic dark matter at the LHC are displaced pions together with a monojet plus missing energy, and can be tested at the 7 TeV LHC.  相似文献   

7.
《Nuclear Physics B》1988,307(4):883-908
We present new predictions for the detection of supersymmetric dark matter via its annihilation in the Sun and elastic scattering off heavy nuclei in the laboratory. Our predictions include many effects found in realistic models such as non-degenerate left- and right-squark masses, unequal supersymmetric Higgs v.e.v.s and photino/higgsino/zino mixing in the lightest supersymmetric particle (LSP). Hadronic matrix elements are estimated using either the naive quark model or the EMC measurement of the spin-dependent proton structure function and perturbative QCD. Nuclear matrix elements are calculated using the shell-model and the small effects of quark vector current operators are discussed. Previous predictions for the elastic LSP-proton scattering cross section, and hence for high energy solar neutrinos from LSP annihilations, are reduced by the EMC estimate and by unequal squark masses, but may be increased by unequal Higgs v.e.v.s. Previous predictions for elastic photino scattering off nuclei with unpaired neutrons are greatly enhanced by the EMC estimate. As a result, preferences for the nuclei to be used in laboratory experiments to detect supersymmetric dark matter may be greatly altered.  相似文献   

8.
研究了含有暗物质的夸克核心混合星的观测属性。用相对论平均场理论和有效质量口袋模型分别描述夸克核心的混合星物质内强子相和夸克相,用Gibbs相平衡条件描述强子-夸克混合相,研究了由于包含强、弱相互作用的费米子暗物质对混合星质量、半径、引力红移、自转频率和转动惯量等整体观测属性的影响。结果表明,在强、弱相互作用下,暗物质粒子质量大于等于0.5 GeV时暗物质会使混合星的状态方程比无暗物质时有一定软化,相应的混合星最大质量减少。当调节暗物质粒子质量研究表明,随着暗物质粒子质量的增大,夸克核心的混合星物质的状态方程变软,混合星的质量、半径变小,并且引力红移、自转频率和转动惯量等整体观测属性也明显依赖于暗物质粒子的质量。当暗物质粒子质量0.1 GeV时,包含强、弱作用暗物质的混合星质量达到2.0 M和2.8 M(其中M为太阳质量),说明大质量脉冲星PSR J1859-0131和J1931-01可能是包含小质量暗粒子暗物质的强子夸克的混合星。整体观测属性的计算结果均在中子星的天文观察数据范围内,也说明强子夸克的混合星内可能包含暗物质。The observational properties of quark core hybrid star contain dark matter are studied. The influences of containing of strongly or weakly interacting dark matter to global observational features of hybrid stars, mass, radius, gravitational red-shift, rotational period and moment of inertia are studied by using relativistic mean field theory to describe hadron phase, effective mass bag model to quark phase, and Gibbs phase equilibrium conditions to hadron-quark mixed phase respectively. Our results indicate that, both in the strong and weak interacting case, the equation of state for hybrid star matter contain dark matter become softer than that of without dark matter while the mass of dark matter particles larger than 0.5 GeV, which leads to the decrease of the mass and corresponding radius of hybrid star. With the increase of the dark matter particle mass, the equation of state for hybrid star matter become softer, this cause the decrease of the mass and radius of hybrid star obviously. The gravitational red-shift and the rotational period, obviously increase of the moment of inertia of the hybrid stars are influenced by the dark matter particle mass. When the dark matter particle mass is equal to 0.1 GeV, the masses of the star with strong and weak interacting dark matter reach to 2.0 M and 2.8 M(M is the solar mass), this result indicates that the giant mass PSR, J1859-0131 and J1931-01, can be a hadron-quark hybrid star and containing dark matter with small dark particle mass. The computational results of all above global observational features of hybrid stars are in the range of astronomical observation data, these also indicate that hybrid star with quark core may contains dark matter.  相似文献   

9.
We consider the prospects for studying spin-independent isospin-violating dark matter-nucleon interactions with neutrinos from dark matter annihilation in the Sun, with a focus on IceCube/DeepCore (IC/DC). If dark matter-nucleon interactions are isospin-violating, IC/DC?s reach in the spin-independent cross section may be competitive with current direct detection experiments for a wide range of dark matter masses. We also compare IC/DC?s sensitivity to that of next generation argon, germanium, neon and xenon based detectors.  相似文献   

10.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.  相似文献   

11.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall call such a phenomenon incoupling. We use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the first power product of the dark energy and dark matter densities gives an excellent fit to the current data.  相似文献   

12.
We present a simple extension of the minimal supersymmetric standard model which provides a unified picture of cosmological baryon asymmetry and dark matter. Our model introduces a gauge singlet field N and a color triplet field X which couple to the right-handed quark fields. The out-of-equilibrium decay of the Majorana fermion N mediated by the exchange of the scalar field X generates adequate baryon asymmetry for MN approximately 100 GeV and MX approximately TeV. The scalar partner of N (denoted N1) is naturally the lightest SUSY particle as it has no gauge interactions and plays the role of dark matter. The model is experimentally testable in (i) neutron-antineutron oscillations with a transition time estimated to be around 10(10)sec, (ii) discovery of colored particles X at LHC with mass of order TeV, and (iii) direct dark matter detection with a predicted cross section in the observable range.  相似文献   

13.
毕效军  秦波 《物理》2011,40(1):13-17
文章首先对暗物质的概念作了简单介绍,接着介绍了暗物质的发现过程和暗物质存在的证据等.随后,介绍了目前人们对暗物质粒子基本性质的理解和目前比较流行的暗物质模型,并解释了弱相互作用重粒子(WIMP)为什么获得人们最多的关注.文中还简单介绍了目前探测暗物质粒子的三种实验方法:对撞机探测法、直接探测法和间接探测法.最后,介绍了目前暗物质探测的最新进展,包括来自DAMA,CoGent,PAMELA,ATIC,Fermi等实验的最新结果.  相似文献   

14.
We study dark matter production at CERN LHC from black hole remnants (BHR). We find that the typical mass of these BHR at the LHC is ∼5–10 TeV which is heavier than other dark matter candidates, such as axion, axino, neutralino, etc. We propose the detection of this dark matter via single jet production in the process pp → jet + BHR (dark matter) at CERN LHC. We find that for zero impact parameter partonic collisions, the monojet cross section is not negligible in comparison to the standard model background and is much higher than the other dark matter scenarios studied so far. We also find that dσ/dp T of jet production in this process increases as p T increases, whereas in all other dark matter scenarios the dσ/dp T decreases at CERN LHC. This may provide a useful signature for dark matter detection at the LHC. However, we find that when the impact parameter dependent effect of inelasticity is included, the monojet cross section from the above process becomes much smaller than the standard model background and may not be detectable at the LHC.  相似文献   

15.
A very active hunt is underway to discover the composition of dark matter in the universe. A large effort is devoted to the direct detection of dark matter through interactions with detectors in the laboratory. In this paper, we give an overview of the dark matter problem, discuss some of the design considerations taken in direct detection experiments, and describe some of the current efforts to discover Weakly Interacting Massive Particles (WIMPs), a well-motivated class of candidates for dark matter.  相似文献   

16.
《Physics letters. [Part B]》1997,415(2):161-169
In models where supersymmetry breaking is communicated into the visible sector via gauge interactions the lightest supersymmetric particle is typically the gravitino which is too light to account for cold dark matter. We point out that the lightest messenger sneutrinos with mass in the range of one to three TeV may serve as cold dark matter over most of the parameter space due to one-loop electroweak radiative corrections. However, in the minimal model this mass range has been excluded by the direct dark matter searches. We propose a solution to this problem by introducing terms that explicitly violate the messenger number. This results in low detection rate for both direct and indirect searches and allows messenger sneutrinos to be a valid dark matter candidate in a wide region of SUSY parameter space.  相似文献   

17.
The last 2 years has seen an immense amount of activity and results from the Large Hadron Collider (LHC). Most notable is the discovery of a new particle which may very well be the long sought Higgs boson associated with electroweak symmetry breaking. There have also been many (up to now) unsuccessful searches for new particles associated with supersymmetry. One of the most attractive candidates for dark matter is the lightest supersymmetric particle (LSP). The recent results from the LHC have had a dramatic impact on our expectations for the properties of the LSP. These results can be used to revise expectations for both direct and indirect detection of dark matter.  相似文献   

18.
毕效军  秦波 《物理》2011,40(01):13-17
文章首先对暗物质的概念作了简单介绍,接着介绍了暗物质的发现过程和暗物质存在的证据等.随后,介绍了目前人们对暗物质粒子基本性质的理解和目前比较流行的暗物质模型,并解释了弱相互作用重粒子(WIMP)为什么获得人们最多的关注.文中还简单介绍了目前探测暗物质粒子的三种实验方法:对撞机探测法、直接探测法和间接探测法.最后,介绍了目前暗物质探测的最新进展,包括来自DAMA,CoGent,PAMELA,ATIC,Fermi等实验的最新结果.  相似文献   

19.
Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its “elastic” response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde’s theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde’s emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde’s apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde’s apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde’s result at relatively small scales (e.g., \(R<3h_{70}^{-1}\) Mpc). However, it seems that, compared with Verlinde’s relation, at large scales (e.g., gravitating systems with \(R>3h_{70}^{-1}\) Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde’s emergent gravity and McGaugh’s recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation inspired by Verlinde’s emergent gravity will be addressed for galactic and solar scales. Potential possibilities to test this dark-baryonic mass relation as well as apparent dark matter effects, e.g., planetary perihelion precession at Solar System scale, will be considered. This may enable to place some constraints on the magnitudes of the MOND characteristic acceleration at the small solar scale.  相似文献   

20.
The lowest frequency of the dipole f mode (surface gravity wave) of the Sun and some other stars is shown to be close to the orbital frequency of a trial body near the star surface, as well as the wave amplitude is shown to be resonantly increased to the values large enough to be observed. Therefore the Sun is considered to be a sensitive detector for hypothetical compact cosmic bodies made of dark matter particles. In this connection some possible characteristics of the dark matter bodies (DMB) are discussed, and DMB orbits in the Sun are calculated within a standard solar model in order to compare the wave amplitudes with data for the solar surface oscillations, and to estimate the masses and radii of the DMB. As well, some possible phenomena in star and planet structures are discussed with special attention on generation of flares of high X-ray classes, specific behavior of the Moon dust, formation of short-time vertical flows in deserts, oceans, and atmospheres on the Earth and other planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号