首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantum logic gates based on coherent electron transport in quantum wires   总被引:3,自引:0,他引:3  
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.  相似文献   

2.
We proposed a new kind of coupled coaxial cylindrical quantum wires structure - quantum cable, and calculated its single-electron energy subband spectrum for the varying structure parameters, in order to investigate its subband motion in the structure parameter space. It is shown that quantum cable has unique subband spectrum, which differs either from the (solid and hollow) cylindrical quantum wire or from the usual coupled double quantum wires (CDQWs) structure. Aside from the two-fold degeneracy induced by the cylindrical symmetry, crossings (accidental degeneracies) and anticrossings (repulsions) of quantum cable subbands with different azimuthal and radial quantum numbers are observed as one of the cable structure parameters varies. This introduces the dependence of the subband ladder on the structure parameters of the quantum cable structure. However, the subband with the lowest azimuthal and radial quantum numbers remains the lowest subband and never crosses with the other subbands irrespective of the value of structure parameters. As the coupling barrier is broadening (coupling becoming weak), some subbands bundling toward another subband is seen before the extreme isolating limit achieved. Moreover, the separation between neighboring subbands exhibits non-monotonous evolution as one changes the thickness of one of the cylindrical quantum wires, with a minimum existing in the separation between some two adjacent subbands. Interesting optical and transport phenomena arising from these unique subband properties of the quantum cable structure are also predicted. Received 22 March 2000 and Received in final form 6 June 2000  相似文献   

3.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

4.
We propose an architecture to perform quantum computation, using ballistic electrons as qubits and coupled quantum rings as quantum gates. In the proposed architecture two adjacent one-dimensional wires, creating a single qubit, are connected to two coupled quantum rings, where the required magnetic flux is provided by enclosed nano-sized magnets. The phase modulation of the wave function of the ballistic electrons under the Aharonov–Bohm effect is carefully designed to facilitate reprogrammable and dynamically controllable quantum gates. Arbitrary single-qubit quantum gates with high fidelity can be constructed on the basis of this architecture.  相似文献   

5.
We have developed a novel nonlithographic technique for the fabrication of large arrays of quantum wires with complex layered structures that will find applications in many fields. The technique is based on an image reversal process to form an array of tantalum oxide nano-pillars that are used as masks for the etching of epitaxially grown semiconductor layers on an arbitrary substrate. This technique can be used to form quantum wires of complex layered structures that are essential for most practical applications. We have developed the technology to create quantum wires of silicon, however, the technique can be extended to any other material system.  相似文献   

6.
We demonstrate that in a wide range of temperatures Coulomb drag between two weakly coupled quantum wires is dominated by processes with a small interwire momentum transfer. Such processes, not accounted for in the conventional Luttinger liquid theory, cause drag only because the electron dispersion relation is not linear. The corresponding contribution to the drag resistance scales with temperature as T2 if the wires are identical, and as T5 if the wires are different.  相似文献   

7.
A dispersion relation ε (q) is derived for electrons in a planar superlattice constructed in the form of a quantum well that is coupled by tunneling with a periodic array of parallel strip-shaped quantum wires. A narrow miniband inside of the substantially wider gap is demonstrated for special resonance conditions. Since the obtained spectra are very sensitive to correlation of different array parameters they can be tuned and detuned easily.  相似文献   

8.
We investigate nuclear spin effects in a two-dimensional electron gas in the quantum Hall regime modeled by a weakly coupled array of interacting quantum wires. We show that the presence of hyperfine interaction between electron and nuclear spins in such wires can induce a phase transition, ordering electrons and nuclear spins into a helix in each wire. Electron-electron interaction effects, pronounced within the one-dimensional stripes, boost the transition temperature up to tens to hundreds of millikelvins in GaAs. We predict specific experimental signatures of the existence of nuclear spin order, for instance for the resistivity of the system at transitions between different quantum Hall plateaus.  相似文献   

9.
A low temperature Near Field Scanning Optical Microscope (NSOM) has been built and operated to study the optical properties of individual quantum structures. Near field spectroscopy of modulation doped quantum dots is performed and spectra of a single dot is obtained. Spectral maps of 100nm quantum wires resolve a well defined region where emission from the n=2 quantum confined state is enhanced. This effect is attributed to local strain in the sample.  相似文献   

10.
抛物量子线中束缚磁极化子的性质   总被引:4,自引:4,他引:0       下载免费PDF全文
苏亚拉  肖景林 《发光学报》2006,27(3):296-302
研究抛物量子线中束缚磁极化子的性质,采用线性组合算符和幺正变换方法导出了强、弱耦合两种情况下的基态能量、振动频率和光学声子平均数.结果表明,无论是强耦合还是弱耦合情况,抛物量子线中束缚磁极化子的振动频率λ、基态能量E0和光学声子平均数N都随约束强度ω0的增大而迅速增大.  相似文献   

11.
We calculate the interwire element of the impurity spectral function in coupled double quantum wires at finite temperatures. Simple anisotropy in the direction perpendicular to the wires gives rise to this element, which is responsible for tunneling-induced effects. We find interwire particle–hole (single-particle) excitations contributing to the total impurity spectral function for temperatures up to 20 K.  相似文献   

12.
One dimensional (1D) quantum wire structures are emerging as the new generation of semiconductor nanostructures offering exciting physical properties which have significant potential for novel device applications. These structures have been the subject of intensive investigation recently including extensive theoretical and experimental studies of their interband optical properties. In this work we present the results of our study of the intersubband optical transitions in 1D semiconductor quantum wires. The crescent shaped quantum wire structures used for this research were grown on non-planar GaAs substrates. The intersubband transition energy spectra, the selection rules, and the two dimensional envelope wavefunctions were theoretically investigated by using our new LENS (local envelope states) expansion. We present recent experimental results on modulation doped V-groove quantum wires, including PL, PLE, TEM, CL, and infrared polarization resolved spectroscopy. We have observed a very unusual absorption lineshape at the far-infrared wavelengths that we assigned to phonon assisted Fano resonance in a modulation doped quantum wire structure.  相似文献   

13.
In this work we study the binding energy of the ground state for a hydrogenic donor impurity in laterally coupled GaAs/Ga1−xAlxAs quantum well wires, considering the simultaneous effects of hydrostatic pressure and applied electric field. We have used a variational method and the effective mass and parabolic band approximations. The low dimensional structure consists of two quantum well wires with rectangular transverse section coupled by a central Ga1−xAlxAs barrier. Our results are reported for several sizes of the structure and we have taken into account variations of the impurity position along the growth direction of the heterostructure.  相似文献   

14.
We show that quantum dots and quantum wires are formed underneath metal electrodes deposited on a planar semiconductor heterostructure containing a quantum well. The confinement is due to the self-focusing mechanism of an electron wave packet interacting with the charge induced on the metal surface. Induced quantum wires guide the transfer of electrons along metal paths and induced quantum dots store the electrons in specific locations of the nanostructure. Induced dots and wires can be useful for devices operating on the electron spin. An application for a spin readout device is proposed.  相似文献   

15.
We propose a novel method of coupling heterogeneous quantum dots at fixed distances and capsulating the coupled quantum dots by utilizing nanometric local curing of a photo-curable polymer caused by multistep electronic transitions based on a phonon-assisted optical near-field process between quantum dots. Because the coupling and the capsulating processes are triggered only when heterogeneous quantum dots floating in a solution closely approach each other to induce optical near-field interactions between them, the distances between the coupled quantum dots are physically guaranteed to be equal to the scale of the optical near fields. To experimentally verify our idea, we fabricated coupled quantum dots, consisting of CdSe and ZnO quantum dots and a UV-curable polymer. We also measured the photoluminescence properties due to the quantum-dot coupling and showed that the individual photoluminescences from the CdSe and ZnO quantum dots exhibited a trade-off relationship.  相似文献   

16.
The oscillatory characteristics of magnetoconductance for a junction composed of a superconductor and a semiconductor, in which two parallel quantum wave guides are coupled with each other through a potential barrier layer, are studied systematically. To model the imperfectness of the interface, we introduce a function scattering potential barrier lying close to the interface of the junction. The magnetoconductance oscillations (MCO) in this system stem from two sources: one is the interference of wave functions of quasi-particles due to multiple Andreev reflections at the interface; the other is attributed to the variation of the number of the propagation modes when introducing the isolating barrier layer. The introduction of the isolating layer in the quantum wave-guides strongly modifies MCO. We also present a physical picture for the MCO based on a phenomenological argument. The theoretically fitted results are in good agreement with numerical ones.Received: 21 March 2003, Published online: 4 August 2003PACS: 73.40.-c Electronic transport in interface structures - 74.80.Fp Point contact; SN and SNS junctions - 73.21.Hb Quantum wires - 85.35.Be Quantum well devices (quantum dots, quantum wires, etc.)  相似文献   

17.
The electron transport through a quantum-wire system in the presence of inhomogeneous magnetic fields is investigated theoretically. The system consists of two parallel quantum wires coupled by two ballistic windows, while the magnetic fields applied are uniform and equal in the two wires but vanishing in the two coupling windows and everywhere between the wires. Various transmissions of the system are calculated. It is found that the inhomogeneous magnetic fields induce irregular transmission oscillations in the low and moderate magnetic-field regions, and regular ones in the high field region. These transmission oscillations are due to interference between the electron waves traveling through different coupling windows and can be interpreted in terms of a semiclassical model. The Hall resistance of the system is also calculated and is found to show similar regular oscillations at high magnetic fields.  相似文献   

18.
The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R≥3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Δso| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.  相似文献   

19.
研究了抛物量子点中弱耦合束缚极化子的性质,采用改进的线性组合算符和幺正变换方法导出了束缚极化子的振动频率、有效质量和相互作用能。讨论了量子点的有效受限长度、电子LO声子耦合强度和库仑场对抛物量子点中弱耦合极化子的振动频率、有效质量和相互作用能的影响。数值计算结果表明:弱耦合束缚极化子的振动频率和相互作用能随有效受限长度的减少而急剧增大,振动频率随库仑势以及电子LO声子耦合强度的增加而增加,而相互作用能随库仑势以及电子LO声子耦合强度的增加而减小。有效质量仅与电子LO声子耦合强度有关。  相似文献   

20.
谢月娥  颜晓红  陈元平 《中国物理》2006,15(10):2415-2421
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号