首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of electrohydrodynamic (EHD) gas pumps have been experimentally evaluated. Two tubes of different size were used to house the EHD gas pumps. Experiments were conducted using positive direct current with voltage varying from 13 kV to 30 kV. The applied voltage at which flow was induced correlates well with the electrode spacing. Air flows with a uniform velocity profile were induced in the smaller tube and an inverted parabolic profile in the larger tube. The results also show that the ionic wind velocity increases to a maximum value and then decreases to an asymptotic value.  相似文献   

2.
The flow characteristics of a corona jet, which is produced from a single needle electrode positioned at the centerline of a circular tube fitted with a grounded stainless-steel nozzle at one end of the tube, is experimentally evaluated. Six nozzles with two diameter ratios and three taper angles are evaluated for their effectiveness in accelerating the jet produced by corona discharge with positive polarity. To determine the maximum jet velocity and volume flow rate, experiments have been conducted at a voltage ranging from corona onset (5 kV) to sparkover (approximately 12.5 kV) at an increment of 2.5 kV. The results show that the jet velocity increases with the applied voltage. The maximum velocity occurs at the center line but its value decreases as the jet expands downstream. In addition, the results show that a nozzle with a smaller diameter ratio does not always perform the best in accelerating the flow or producing the maximum volume flow rate. The nozzle's taper angle further accentuates the result produced by the diameter ratio. The implications from the present results for actual applications are provided.  相似文献   

3.
This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.  相似文献   

4.
《Journal of Electrostatics》2006,64(7-9):498-505
In this work, results of two- and three-dimensional particle image velocimetry (PIV) measurements of the flow velocity fields in a wide spacing spike–plate electrostatic precipitator (ESP) under positive polarity are presented. A DC voltage of positive polarity (up to 28 kV) was applied to the spike electrode. The average gas flow velocity was 0.6 m/s. The PIV measurements were carried out in four planes perpendicular to the plate electrodes. Three parallel planes passed along the ESP while one plane passed across the ESP duct. The results show that electrohydrodynamic (EHD) secondary flow with relatively strong vortices exist in the ESP. The EHD secondary flow pattern depends on applied voltage and measuring plane position in respect to the spike tip. The strongest vortices occur in the plane passing through the tip of the upstream-directed spike. These relatively strong EHD vortices may hinder collection of the particles in the diameter range of 0.1–1 μm in the wide electrode spacing spike–plate ESPs.  相似文献   

5.
In this paper the effects of electrohydrodynamics (EHD) on heat transfer enhancement and flow pattern of R134a two-phase mixture, flowing in a horizontal tube, were numerically investigated. A uniform DC electric field was applied through a circular stainless steel rod along the centerline of tube, while the tube was considered as a grounded electrode. The simulations, in order to investigate the EHD mechanism, were performed for a constant heat flux 2000 W/m2, voltages between 0 and 5 kV, inlet volume fractions 65% and 85%, mass fluxes from 30 kg/m2s to 50 kg/m2s and electrode diameters between 1.57 mm and 2.4 mm. These flow conditions correspond to stratified flow. The flow regime redistributions under the applied electric field was obtained. The results show that the steady state condition was occurred at the time about 900 ms. According to the results, enhancement ratio is directly proportional to voltage, and it is reversely proportional to electrode diameter, mass flux and inlet volume fraction.  相似文献   

6.
Wood combustion generates a high concentration of particulate matter emission, but most of the particulates in the exhaust gas can be filtered through an electrostatic precipitator. The objective of this paper is to model the trajectory of particulates in the exhaust chimney of a small scale wood combustion furnace with an electrostatic precipitator. The precipitator consists of a central electrode subjected to a maximum high voltage of 50 kV and an outer electrode of 180 mm diameter, ground potential. The parameters including particle size, ambient temperature, pressure, gas flow rate and the applied voltage have been varied while computing the trajectories of the particles in the chimney. The trajectories of particulates have been analyzed for different sizes of a typical wood combusting stove by taking different forces into account on particulates. The critical conditions give the trajectory of particles as a function of particulate size and applied voltage together with the function of efficiency.  相似文献   

7.
An experimental investigation and one-dimensional modeling have been conducted to study the mechanism of net flow direction induced by electrohydrodynamic (EHD) forces in a wire-non-parallel plate electrode type EHD gas pump. The experiments were conducted with various different locations of corona wire electrode for negative and positive applied voltage from 0 to 14 kV at atmospheric pressure and room temperature, where air was used as the working fluid. A one-dimensional cross-sectional averaged model based on mass and momentum conservation as well as Poisson electric field and ion transport equations was also developed. The results show that the net flow direction of electrohydrodynamically induced gas flow in a wire-non-parallel plate electrode system significantly depends on the location of the corona wire electrode relative to the grounded electrode position. The effect of conversion angle of non-parallel plate electrode on the net flow direction and pressure drop also was investigated and discussed in detail.  相似文献   

8.
为减小脉冲功率源装置的体积,对场畸变三电极轨道气体开关和两电极轨道气体开关结构进行了小型化低电感设计,采用电磁场仿真软件对局部结构进行优化,对初步设计的触发开关和自击穿开关在不同气压(0~0.3MPa)和不同气体介质(N2,SF6,以及二者混合)条件下的击穿电压及导通电感等进行了研究。研究表明:小型触发开关和自击穿开关在0~0.3MPa气压范围内自击穿电压随气压具有较好的线性关系;相同气压下SF6气体的自击穿电压约为N2气体的两倍;N2与SF6压力按3∶2混合的自击穿电压约为纯SF6气体的0.8~0.9倍;内部充入0.25MPa气压的SF6气体时,触发开关和自击穿开关均可在190kV左右正常工作。根据实验中出现的开关沿面击穿现象,对开关的沿面绝缘能力进行了优化设计,并得到了实验验证。另外通过短路放电测试,得到触发开关电感约22nH,自击穿开关电感约20nH,开关导通电流大于20kA,多次放电后电极烧蚀痕迹分布均匀。  相似文献   

9.
An investigation was performed to study the electrical effects on the soot deposition in a co-axial wire cylinder with cooled walls. Experiments were performed for applied voltages from 0 to ?5 kV or +5 kV and a diesel exhaust mass flow rate of 20 kg/h or Reynolds number of approximately 9000. The outer wall was cooled using water with a temperature of approximately 40 °C, and the experiments were performed for exposure times of 2 h. The soot deposition layer thickness was measured using a non-destructive neutron radiography technique at the end of each experiment. The results show that the electric field had a significant effect on the soot deposition and increases it by a factor of approximately 4 at the applied voltage of 5 kV before spark on-set. The soot thickness was similar for the positive and negative polarities and the results show that there was significant deposition on the wire as well as the outer wall for both polarities. Since soot deposition even occurs on both corona wire and grounded pipe below corona on-set voltages of the clean system, there may be a significant pre-charging of the diesel soot with both polarities in the diesel exhaust gas as has been observed by the recent measurements of Marieq [On the electrical charge of motor vehicle exhaust particles, Journal of Aerosol Science 37 (7) (2006) 858–874].  相似文献   

10.
Electrohydrodynamic conduction pumping can generate flow in many dielectric liquids. Studies to-date have focused on macro-scale devices with applied voltages on the order of 10 kV. Conduction pumping generation depends primarily on the intensity of the imposed electric field, so the magnitude of the applied voltage can be significantly reduced in micro-scale pumps. The simplicity of conduction pumps makes them well-suited for pressure generation in micro-scale fluid and heat transfer devices. This experimental study examines the flow and pressure generation of two conduction micro-pumps embedded within rectangular meso- and micro-channels.  相似文献   

11.
In order to improve the particle collection efficiency of the electrostatic precipitator (ESP), a transverse plate ESP with bipolar discharge electrodes is proposed. The simulations of the velocity distribution have shown that when the inlet velocity is 1 m/s, within the range of 40 mm from electrode plate, the average velocities of windward side and leeward side are less than 0.7 m/s and 0.3 m/s respectively. It is clear that the velocity near the collection electrode plate of this bipolar ESP is much lower than that of the ordinary ESP at the same inlet velocity. This low velocity can lead to higher efficiency for fine dust collection due to the less dust re-entrainment in ESP. It is also found that the average velocities are getting lower when the distance between plates electrodes are greater than 150 mm in accordance with the simulations. The voltage current characteristics of the bipolar ESP are superior to the ordinary ESP. The pressure drop of the bipolar ESP is about 30% higher than that of the ordinary one. The dust penetration of the bipolar ESP is about 54% less than that of the ordinary ESP when the sintering dust with 25.405 μm mass median diameter is used as the test particulate under the condition of the electric field from 2.1 kV/cm to 3.2 kV/cm and the velocity from 1.0 m/s to 1.5 m/s.  相似文献   

12.
《Journal of Electrostatics》2007,65(12):728-734
In this work, results of three-dimensional (3D) Particle Image Velocimetry (PIV) measurements of the electrohydrodynamic (EHD) flow velocity fields in a narrow electrostatic precipitator (ESP) with a longitudinal-to-flow placed wire electrode are presented. The ESP was a narrow transparent acrylic box (90 mm×30 mm×30 mm). The electrode set consisted of a single wire discharge electrode and two plane collecting electrodes. Either two smooth stainless-steel plates or two stainless-steel plane meshes with nylon flocks were used as the collecting electrodes. The 3D PIV measurements were carried out in two parallel planes, placed longitudinally to the flow duct. The positive DC voltage of up to 9.5 kV was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The measurements were carried out at a primary flow velocity of 0.5 m/s. Obtained results show that the flow patterns for the smooth-plate electrodes and for the flocking plane electrodes are similar in the bulk of the flow. However, the flow velocities near the flocking plane electrodes are much lower than those near the smooth-plate electrodes. This is a beneficial phenomenon, because the lower the flow near the collecting electrodes, the lower re-entrainment of the particles deposited on the collecting electrodes occurs.  相似文献   

13.
Recently, narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application for the cleaning of the exhaust gases emitted by diesel engines. Diesel engines emit fine particles, which are harmful to human and animal health. There are several methods for decrease particulate emission from a diesel engines, but up to now, these methods are not enough effective or very expensive. Therefore, an electrostatic precipitation was proposed as an alternative method for control of a diesel particulate emission.In this work, results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a narrow wire-cylinder type ESP are presented. The ESP was a glass cylinder (300 mm × 29 mm) equipped with a wire discharge electrode and two collecting cylinder-electrodes. A 0.23 mm in diameter and 100 mm long stainless-steel discharge wire electrode was mounted in the center of the cylinder, parallel to the main flow direction. The collecting electrodes were made of stainless steel cylinders, each with a length of 100 mm and inner diameter of 25.5 mm. An air flow seeded with a cigarette smoke was blown along the ESP duct with an average velocity of 0.9 m/s.The EHD secondary flow was measured using 2-dimensional particle image velocimetry (PIV) method. The PIV measurements were carried out in the wire electrode mid-plane, perpendicularly to the wire and the collecting electrodes. The results show similarities and differences of the particle flow in the wire-cylinder type ESP for a negative and a positive DC voltage polarity.The collection efficiency was calculated from the fractional particle concentration. The fractional particle concentration was measured using the optical aerosol spectrometer. The results of the fractional collection efficiency confirmed the common view that the collection efficiency of fine particles in the ESP increases with increasing voltage and it is higher for negative voltage polarity and decreases when decreasing particle diameter.  相似文献   

14.
We report a 2-inch wide-area AlGaN-based ultraviolet (UV) – cathodoluminescence (CL) light source emission using electron beam (EB) pumped source under DC electric field from an AlGaN/GaN multi-quantum-well grown on a sapphire substrate. The EB-pumping is achieved by wide-area carbon nanotubes (CNT) based field emitters and is arranged via a metal mesh, thereby acting as a gate to pump the electron flow. We have carried out UV–CL measurements with a turn-on field emission in the anode voltage ranging between 5 kV and 9 kV at anode current up to 1 mA. The best results are obtained at the low consumption energy of 7 W (anode current 1 mA; anode voltage 7 kV). The 330 nm UV–CL emission shows an output power of ~225 mW, with an as-calculated power efficiency of ~3.6%. The CL measurements show (5–8) % defect luminescence in the visible region.  相似文献   

15.
The present paper concerns the electromechanical characterization of an actuator composed of a ceramic plate perforated by 121 holes housing embedded and printed electrodes between which a high voltage is applied. The electrode arrangement is such that the holes where the gas flows are surrounded by surface discharges. Electrical measurements and iCCD images show that the discharge behaves as a typical surface dielectric barrier discharge with streamer and glow regimes during one period of the AC sine voltage. Particle image velocimetry has been used to measure the jet flow produced by the discharge. The plasma discharge is at the origin of a wall jet with mean velocity of about 2.2 m/s, oriented from the active electrode to the grounded one. The capability of this discharge for promoting mixing by reducing the length of the jet core is demonstrated for flow velocities from 20 up to 60 m/s. In all the tested cases, the actuator can improve the mixing downstream of the perforated plate, when periodic perturbations are imposed at the jet column mode (StD = 0.3).  相似文献   

16.

Abstract  

In-depth quantitative visualization studies are required to understand the flow induced by swimming micro-organisms and find potential applications. The present study visualized the flow induced by Tetrahymena pyriformis of size 45–50 μm, which swam freely and via stimulation by galvanotaxis in a PDMS micro-chamber using a micro-particle image velocimetry system. The results showed that the maximum velocity of the induced flow was around 430 μm/s for free swimming and 700 μm/s for galvanotactic-controlled swimming. Due to the applied electric field, the electro-osmosis flow led to increased velocity of roughly 135 μm/s at 3 V/mm. The increased velocity stems from the increased motility of the cell under the electric field. Therefore, it was demonstrated that galvanotaxis can control the swimming direction and increase the induced velocity.  相似文献   

17.
The effects of gas composition on gliding arc (glidarc) electrical discharge reactors with pure water have been studied. The glidarc reactors utilized AC electrical discharges with two different electrode configurations. In one case a set of two stainless steel electrodes connected to a single power supply was placed in the gas phase over the liquid surface (power=250–300 W, maximum voltage=12 kV). The second experimental arrangement utilized a reactor with a set of three stainless steel electrodes supplied by two identical high-voltage transformers, where the electrodes were placed over the water surface or with the water sprayed directly in the plasma formed between the electrodes (power=500–600 W, maximum voltage=12 kV). The variation of pH and conductivity and the formation of hydrogen peroxide, ozone, nitrate, and hydrogen were measured. The effects of the type of gas, including pure oxygen, pure nitrogen, and dry air, were determined.  相似文献   

18.
EHD效应强化管内油的强制对流换热实验   总被引:3,自引:0,他引:3  
本文以高粘性流体为实验工质,对水平光滑管内油的层流流动换热进行了直流高压电场强化(EHD效应)实验研究。以实验方法调查了其换热系数强化率与外加电场强度、热流密度及流动速度,油温等因素的相关性。实验证实了外加直流高压电场能对管内层流强制对流换热起着很好的强化作用。验证了高粘性流体在EHD效应下,综合换热性能同样有大幅度增加。  相似文献   

19.
The propagation of plasma jets with argon gas is characterized in terms of two factors, the effect of electric field distribution along the tube and the effect of voltage polarity, from the observed results of optical signals along the entire column of plasma. The optical signal of plasma propagates from the high electric-field region of high-voltage electrode toward the low field region of the open air-space, regardless of the polarity of the voltage. The optical intensity and the propagation velocity are higher for the positive voltage than for the negative voltage. Moreover, the length of plasma plume exited from the end of the glass tube into the open air is shorter for the negative voltage. When the optical intensity is strong enough, a secondary peak signal follows the primary peak. In the plasma column on the inside of the glass tube, the optical intensity and the propagation velocity depend on the strength of the electric field; they are both high at the high-field region of voltage terminal and decay toward the end of the tube. The velocity is as fast as 104 m/s at the high-field region and slows down to 103 m/s at the low-field region of the glass-tube end. However, the plasma accelerates drastically to be (104–105) m/s after exiting the glass tube toward open air, even though the electric field is a quite low and thus the optical signal decays low before fading out. The experimental observations present in this report are explained with the propagation of the plasma diffusion waves.  相似文献   

20.
Needle–cylinder electrodes designed to generate ionic wind have been explored experimentally. The increase of the gap distance between needle and cylinder from 4 mm to 16 mm cause an increase of the ionic wind velocity from 1.1 m/s to 2.46 m/s. The opposite behavior was observed when this distance lengthened from 18 to 28 mm. At the same time, a step voltage was used to increase the ionic wind velocity up to 3.6 m/s. These results indicate that electrode arrangement is very important to maximize the ionic wind velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号