首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new diarylheptanoid, namely trans-(4R,5S)-epoxy-1,7-diphenyl-3-heptanone (1), and a new natural product, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-hepta-4E,6E-dien-3-one (2), were obtained from the aqueous extract of Alpinia officinarum Hance, together with three other diarylheptanoids, 5-hydroxy-1,7-diphenyl-3-heptanone (3), 1,7-diphenyl-4E-en-3-heptanone (4) and 5-methoxy-1,7-diphenyl-3-heptanone (5). The structures were characterised mainly by analysing their physical data including IR, NMR and HRMS. This study highlights that the 4,5-epoxy moiety in 1 is rarely seen in diarylheptanoids. In addition, the five isolates were tested for their differentiation activity of 3T3-L1 preadipocytes. The results showed that these compounds could dose-dependently promote adipocyte differentiation without cytotoxicity (IC50 > 100 μM).  相似文献   

3.
Dyglomera® is an aqueous ethanol extract of the fruit pods of Dichrostachys glomerata, a Cameroonian spice. Several studies have shown its anti-diabetic and anti-obesity effects. However, the underlying mechanisms for such effects remain unclear. Thus, the objective of this study was to investigate the anti-obesity effect of Dyglomera® and its underlying mechanisms in mice with high-fat diet-induced obesity and 3T3-L1 adipocytes. Our results revealed that Dyglomera® inhibited adipogenesis and lipogenesis by regulating AMPK phosphorylation in white adipose tissues (WATs) and 3T3-L1 adipocytes and promoted lipolysis by increasing the expression of lipolysis-related proteins. These results suggest that Dyglomera® can be used as an effective dietary supplement for treating obesity due to its modulating effect on adipogenesis/lipogenesis and lipolysis.  相似文献   

4.
5.
Kahweol, a compound from Coffea arabica, possesses antioxidant, anti-inflammatory, and antitumour properties. However, an anti-adipogenic effect has not yet been reported. In this study, we have shown that kahweol has an anti-adipogenic effect on 3T3-L1 adipocytes. Kahweol significantly inhibited the differentiation of intracellular lipid accumulation in 3T3-L1 adipocytes, without being cytotoxic. It also downregulated the expression of adipogenesis-related gene, including an adipocytokine, adiponectin. This anti-adipogenic effect stems from an ability to inhibit key adipogenic regulators, including PPARγ and C/EBPα. These results demonstrate that kahweol significantly inhibits the differentiation of 3T3-L1 cells, and suggest that it has potential as a novel anti-obesity treatment.  相似文献   

6.
7.
Acer truncatum Bunge is now widely cultivated throughout the world. Fatty acid synthase (FAS) is a potential target in the treatment of both obesity and cancer. Only a few FAS inhibitors have been reported. In this study, the inhibitory effect of A. truncatum seed coat (ESA) on FAS and the inhibition mechanisms were investigated using a FAS activity assay and an enzyme kinetics study. The main chemicals of ESA were analyzed with UPLC-MS/MS. The effects of ESA on 3T3-L1 adipocyte differentiation and lipid accumulation were investigated using Oil red O staining. We first identified seven main compounds (quinic acid, malic acid, gentisic acid, procyanidin dimer, procyanidin trimer, catechin, and quercetin) from 50% ethanol extracts of seed coats of A. truncatum (ESAs), which were then found to inhibit 3T3-L1 adipocyte differentiation at the concentration of 50 μg/mL. ESA obviously reduced the visible triglyceride droplets accumulation, and dramatically decreased the number of the adipocytes at a comparatively high concentration. It is suggested that the effects are due to the inhibition of FAS by ESA; FAS activity is inhibited by ESA at a half inhibition concentration (IC50) of 0.57 μg/mL, which is lower than that of classically known FAS inhibitors. Meanwhile, ESA displayed different inhibition kinetics and reacting sites for FAS. These results provide new clues for the development of novel products for obesity treatment and a scientific basis for the full use of byproducts for future industrial production of vegetable oil.  相似文献   

8.
Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.  相似文献   

9.
Background: Ponciri Fructus, a crude drug consisting of the dried immature fruits of Poncirus trifoliata (L.) Raf., is a popular folk medicine used for the treatment of allergy and gastrointestinal disorders in Korea and China. In this study, the anti-adipogenic activity of extracts and isolated compounds were evaluated using 3T3-L1 preadipocytes. Methods: Dried immature fruits were extracted and fractionated into n-hexane, ethyl acetate (EtOAc), n-butanol and water-soluble fractions. The ethanol extract and fractions were tested for anti-adipogenic activity in the 3T3-L1 cell line. The active fractions (n-hexane and EtOAc fractions) were further subjected to chromatographic techniques to isolate and identify active compounds. Furthermore, the isolated compounds were evaluated for their anti-adipogenic activity. Results: Altogether, seven compounds, including two flavonoids, one phytosteroid and four coumarin derivatives, were isolated. Ethanol extract, n-hexane fraction, EtOAc fraction and three isolated compounds (phellopterin, oxypeucedanin and poncirin) showed significant anti-adipogenic activity as observed by reduced lipid deposition in differentiated 3T3-L1 cells. Further, oxypeucedanin downregulated the key adipogenic markers, such as peroxisome proliferator-activated receptors proteins γ (PPAR-γ), sterol response element binding proteins-1 (SREBP-1), CCAAT/enhancer binding proteins-α (C/EBP-α), adipocyte-specific lipid binding proteins (FABP-4), adipocyte fatty acid binding proteins (aP2), lipoprotein lipase (LPL) and leptin. Conclusion: This study indicated that the ethanol extract, hexane fraction and ethyl acetate fraction of P. trifoliata fruits possess strong anti-adipogenic activity, containing the active compounds such as phellopterin, oxypeucedanin and poncirin. Further research is recommended to explore their efficacy and safety in animal and clinical models.  相似文献   

10.
Three novel compounds, yoshinones A, B1, and B2, were isolated from the marine cyanobacterium Leptolyngbya sp., and their structures were elucidated by NMR spectral analysis. Yoshinone A, but not yoshinone B1 or B2, inhibited the differentiation of 3T3-L1 cells into adipocytes. In addition, yoshinone A did not exhibit cytotoxicity, suggesting that yoshinone A may be useful in studies on the treatment of obesity.  相似文献   

11.
Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.  相似文献   

12.
Since the potential of (3:1) mixtures of Atractylodes macrocephala and Amomum villosum extracts has been proposed in the management of obesity, the purpose of present study was to investigate the effects of AME:AVE (3:1) mixture on weight loss, obesity-related biochemical parameters, adipogenesis and lipogenesis related proteins in 3T3-L1 cells and HFD-induced obesity in a mouse model. Treatment with AME:AVE (3:1) mixture inhibited lipid accumulation. Furthermore, the treatment with 75 and 150 mg/kg of AME:AVE (3:1) significantly decreased the body weight gain, white adipose tissue (WAT) weight, and plasma glucose level in HFD-induced obese mice. Moreover, treatment with 75 and 150 mg/kg AME:AVE (3:1) also significantly lowered the size of adipocytes in adipose tissue and reduced the lipid accumulation in liver. AME:AVE (3:1) treatment significantly decreased the expression of proteins related to adipogenesis and lipogenesis in 3T3-L1 adipocytes and WAT of HFD-induced obese mice. These results suggest that the AME:AVE herbal mixture (3:1) has anti-obesity effects, which may be elicited by regulating the expression of adipogenesis and lipogenesis-related proteins in adipocytes and WAT in HFD-induced obesity in mice.  相似文献   

13.
Adipocytes function not only as in the storage and mobilization of lipids but also as endocrine cells by secreting tumor necrosis factor-α (TNF-α), free fatty acids, and other cytokines. To study the effects of dietary lipids and metabolic factors on the control of the life cycle of adipocytes, we utilized mouse 3T3-L1 preadipocytes that could be induced to differentiate into adipocytes. To evaluate the role of endogenous prostaglandins (PGs) in the adipogenic changes, we examined the effect of specific inhibitors of cyclooxygenase (COX). SC-560, a specific COX-1 inhibitor, suppressed adipogenesis dose dependently, suggesting a role of constitutive COX-1 in the endogenous synthesis of PGs, including PGJ2 derivatives formed by mature adipocytes with the ability to promote adipogenesis. NS-398, a COX-2 inhibitor, had little influence on the maturation processes. Both COX inhibitors were effective in stimulating apoptosis of preadipocytes induced by TNF-α, indicating that both PGE2 and PGF produced by preadipocytes through the action of both COX isoforms serve as survival factors. However, the effect of both inhibitors was negligible for the proliferation of preadipocytes. Moreover, conjugated linolenic acid from bitter gourd at lower concentrations that was without effects by itself synergistically stimulated TNF-α-induced apoptosis. Therefore, dietary lipid factors are capable of controlling the life cycle of adipocytes together with metabolic factors.  相似文献   

14.
Chitosan (CH) is a biopolymer with biocompatible, biodegradable, and bioactive properties. N,N,N‐trimethyl chitosan chloride (TMC) is a quaternized form of CH that is highly cationic and more water soluble than unmodified CH. The physiological activities of CHs with different molecular weights (Mw) and degrees of TMCs quaternization were investigated in U937 and 3T3‐L1 cell lines. 1H‐NMR spectrometry and size exclusion chromatography were used for characterization of the biopolymers. The half inhibition concentration (IC50) of DPPH‐radical‐scavenging activity was below 0.9 mg/m with quaternized CHs. The IC50 values of chitooligosaccharides, low‐ and medium‐molecular‐weight CHs were 8.4, 10.9, and 13.9 mg/ml, respectively. High‐molecular‐weight CHs and TMCs showed apoptotic activity on U937 cells. T41, a TMC of 549 kDa with a 41% degree of quaternization (DQ), yielded 30.7% apoptotic cell death in U937 at 20 µg/ml and effectively repressed cell differentiation and triglyceride accumulation in 3T3‐L1. Depolymerized CHs reduced triglyceride accumulation but also caused cell differentiation. TMCs showed repressor activity to both cell differentiation and triglyceride accumulation. Increasing the molecular weight of CHs and TMCs generally resulted in increased physiological activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The present study was to illustrate the agonistic property of arjungenin and arjunic acid towards farnesoid X receptor protein (FXR).The pharmacokinetic properties like molecular interactions, absorption, distribution, metabolism, elimination and toxicity (ADMET) of the ligands were checked through in-silico studies. Protein-ligand docking was carried out using autodock software. Molecular docking analysis confirmed strong binding energy and interaction of arjungenin and arjunic acid with the target protein and the ADMET profiles identified for both compounds were promising.Further in vitro studies were performed in 3T3-L1 adipocyte to verify the agonistic property of arjungenin and arjunic acid. Oil red O staining was done to check differentiation induction. Adiponectin, leptin, triglycerides and total cholesterol levels were quantified. The mRNA expression of FXR, Cyp7a1, PPAR-γ and SREBP-1c were quantified using fluorescent real-time PCR. Cytotoxicity assay was confirmed that up to 150 μM concentration there is no significant cell death on treatment with arjunic acid and arjungenin. Treatment with arjungenin and arjunic acid confirms increased differentiation of the cells with significant (P < 0.05) increase in adiponectin (118.07% and 132.92%) and leptin (133.52% and 149.74%) protein levels compared to the negative control group. After treatment with arjungenin and arjunic acid in 3T3-L1 preadipocytes the mRNA expression of FXR, PPAR-γ and SREBP-1c were significantly (P < 0.01) increased and cyp7a1 was significantly (P < 0.01) decreased when compared with the negative control group. Overall, our results suggest that arjungenin and arjunic acid acts as an FXR agonist and may be useful for rational therapeutic strategies as a novel drug to treat cholesterol mediated metabolic syndrome and insulin resistance.  相似文献   

16.
以硫酸钻、邻菲咯啉(phen)和3-羟基-1-金刚烷甲酸(HOC10H14COOH)为原料,合成了配合物[Co(HOG10H14COO)2(H2O)(phen)]·H2O;利用元素分析、红外光谱、热重分析对产物进行了表征,采用单晶X射线衍射方法测定了其晶体结构.结果表明,所合成的配合物C34H42N2O8Co属于单斜晶系,空间群C2/c,a=2.69798(7)nm,b=1.14319(3)nm,c=2.29092(6)nm,β=120.498(1)°,V665.63,F(000)=2808,Dc=1.452g·cm^-3,μ(Mo-Kα)=0.765mm^-1;R1=0.0805,wR2=0.2209,其通过氢键和π-π堆积作用相结合,形成稳定的二维超分子结构.  相似文献   

17.
研究了5-甲氧基吲哚乙酸(MIAA)的电化学行为和机理,并采用方波伏安法建立了尿液中MIAA的快速分析方法。在0.2mol/L的NH3-NH4Cl缓冲溶液(pH=9.2)中,MIAA在 0.5V(vs.Ag/AgCl)电位处产生一个吸附控制的不可逆阳极氧化峰。峰电流与MIAA浓度在4.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系;检出限为9.8×10-7mol/L,RSD为3.5%。将本法应用于尿样中MIAA含量的快速检测,回收率为91%~99%,样品全分析在10min以内,具有快速、简便和低成本的特点,可以用于松果体腺功能评价。  相似文献   

18.
Fragmentations of various α-acetoximino ketoesters in neat polyphosphoric acid medium to form acylium ions were studied. The resulting acylium ions were trapped by benzene rings either intermolecularly or intramolecularly.  相似文献   

19.
The mixing enthalpies of aqueous heavy rare alkali metal chloride RbC1 solutions with aqueous α-amino acid (Loglycine, L-alanine and α-aminobutyric acid) solutions, as well as the dilution enthalpies of RbC1 and α-amino acid solutions in pure water had been measured at 298.15K. The transfer enthalpies of RbCI from pure water to aqueous α-amino acid solutions could be obtained from these data. The enthalpic pair interaction parameters of RbC1 with α-amino acid in water have been evaluated according to the McMillan-Mayer theory and discussed in terms of the electrostatic interaction, structure interaction and Savage-wood group additivity mode.  相似文献   

20.
High-fat (HF) diets and low-grade chronic inflammation contribute to the development of insulin resistance and type 2 diabetes (T2D), whereas n-3 polyunsaturated fatty acids (PUFAs), due to their anti-inflammatory effects, protect against insulin resistance. Interleukin (IL)-1β is implicated in insulin resistance, yet how n-3 PUFAs modulate IL-1β secretion and attenuate HF diet-induced insulin resistance remains elusive. In this study, a HF diet activated NLRP3 inflammasome via inducing reactive oxygen species (ROS) generation and promoted IL-1β production primarily from adipose tissue preadipocytes, but not from adipocytes and induced insulin resistance in wild type (WT) mice. Interestingly, endogenous synthesized n-3 polyunsaturated fatty acids (PUFAs) reversed this process in HF diet-fed fat-1 transgenic mice although the HF diet induced higher weight gain in fat-1 mice, compared with the control diet. Mechanistically, palmitic acid (PA), the main saturated fatty acid in an HF diet inactivated AMPK and led to decreased GSK-3β phosphorylation, at least partially through reducing Akt activity, which ultimately blocked the Nrf2/Trx1 antioxidant pathway and induced TXNIP cytoplasm translocation and NLRP3 inflammasome activation, whereas docosahexaenoic acid (DHA), the most abundant n-3 PUFA in fat-1 adipose tissue, reversed this process via inducing Akt activation. Our GSK-3β shRNA knockdown study further revealed that GSK-3β played a pivot role between the upstream AMPK/Akt pathway and downstream Nrf2/Trx1/TXNIP pathway. Given that NLRP3 inflammasome is implicated in the development of most inflammatory diseases, our results suggest the potential of n-3 PUFAs in the prevention or adjuvant treatment of NLRP3 inflammasome-driven diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号